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Abstract. Belief-Desire-Intention (BDI) agents feature probabilistic
outcomes, e.g. the chance an agent tries but fails to open a door, and
non-deterministic choices: what plan/intention to execute next? We want
to reason about agents under both probabilities and non-determinism to
determine, for example, probabilities of mission success and the strategies
used to maximise this. We define a Markov Decision Process describing
the semantics of the Conceptual Agent Notation (Can) agent language
that supports non-deterministic event, plan, and intention selection, as
well as probabilistic action outcomes. The model is derived through an
encoding to Milner’s Bigraphs and executed using the BigraphER tool.
We show, using probabilistic model checkers PRISM and Storm, how to
reason about agents including: probabilistic and reward-based properties,
strategy synthesis, and multi-objective analysis. This analysis provides
verification and optimisation of BDI agent design and implementation.

Keywords: BDI Agents · Quantitative Verification · Strategy
Synthesis · Markov Decision Process · Bigraphs · PRISM · Storm

1 Introduction

BDI agents [1] are a popular architecture for developing rational agents where
(B)eliefs represent what an agent knows, (D)esires what the agent wants to bring
about, and (I)ntentions the desires the agent is currently acting on. BDI agents
have inspired many agent programming languages including AgentSpeak [2],
Can [3], 3APL [4], and 2APL [5] along with a collection of mature software
including JACK [6], Jason [7], and Jadex [8].

In BDI languages, desires and intentions are represented implicitly by defin-
ing a plan library where the plans are written by programmers in a modular
fashion. Plans describe how, and under what conditions (based on beliefs), an
agent can react to an event (a desire). The set of intentions are those plans that
are currently being executed. A desirable feature of agent-based systems is that
they are reactive [9]: an agent can respond to new events even while already
dealing with existing events. To allow this, agents pursue multiple events and
execute intentions in an interleaved manner. This requires a decision making
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process: which event to handle first (event selection) and which intention to
progress next (intention selection). When handling events, we must also decide
on which plan is selected from a set of possible plans (plan selection).

The deployment of BDI-based systems raises concerns of trustworthiness. For
example, erroneous plans can cause incorrect behaviour. Even with a correct
plan library, careless decisions for interleaving intention progression can result
in failures/conflicts, e.g. the execution of one intention can make it impossible
to progress another. This negative tension between modularised plan design
and interleaved execution is difficult to identify using traditional non-exhaustive
testing approaches as there is no guarantee we see all interleavings. Furthermore,
the outcome of an action may be probabilistic due to imprecise actuation. As a
result, there is a growing need for formal techniques that can handle quantitative
properties of agent-based systems [10]. Given the number of decisions faced by
an agent, we may want to synthesise a strategy to determine ahead-of-time the
decisions an agent should make e.g. to avoid the worst-case execution.

Verifying BDI agent behaviours through model checking and theorem prov-
ing has been well explored. For example, the authors apply the Java PathFinder
model-checker (resps. Isabelle/HOL proof assistant) to verify BDI programs in
the work [11] (resp. [12]). Unfortunately, they do not adequately represent agent
behaviours in cyber-physical robotics systems (e.g. surveyed in [13]) with impre-
cise actuators. To reason with the quantitative behaviours of BDI agents, the
authors of [14] investigate the probabilistic semantics and resulting verification
of BDI agents with imprecise actuators by resolving non-determinism in various
selections through manually specified strategies (fixed orders, round-robin fash-
ion, or probabilistic distribution). However, these hand-crafted strategies may
not be optimal. Determining effective strategies is complex and often requires
advanced planning algorithms [15,16].

We show how to combine and apply quantitative verification and strategy
synthesis [17,18] within BDI agents allowing us to both determine, e.g. the proba-
bility an agent successfully completes a mission under environmental uncertainty,
and also a method to resolve the non-determinism required for intention/event/-
plan selection. We focus on the Can language [3,19] which features a high-level
agent programming language that captures the essence of BDI concepts with-
out describing implementation details such as data structures. As a superset of
most well-known AgentSpeak [2], Can includes advanced BDI agent behaviours
such as reasoning with declarative goals and failure recovery, which are necessary
for our examples discussed in Sect. 4. Importantly, although we focus on Can,
the language features are similar to those of other mainstream BDI languages,
and the same modelling and verification techniques would apply to other BDI
programming languages.

We build on our previous work [14] developing an executable probabilis-
tic semantics of Can [3], based on Milner’s Bigraphs [20]. Specifically, we
use probabilistic bigraphs [21], that assigns probabilities to transitions (graph
rewrites). Previously, we used manually-crafted strategies (e.g. fixed schedule) to
resolve non-determinism. Instead, we keep these selections as non-deterministic
choices and encode them using action bigraphs [21] (which supports modelling
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non-deterministic actions). This provides a model of Can based on a Markov
decision process (MDP) [22], that we denote as Canm. The MDP formalisation
of agent behaviours enables us to model certain unknown aspects of a system’s
behaviour e.g. the scheduling between intentions executing in parallel and rep-
resent uncertainty arising from, for example, imprecise actuator. For analysis,
we export, using BigraphER [23], the underlying MDP to the popular proba-
bilistic model checkers PRISM [24] and Storm [25]. This includes probabilistic
and reward-based properties, strategy synthesis, and multi-objective analysis. In
particular, temporal logics provide an expressive means of formally specifying
the requirement properties when synthesising strategies that are guaranteed to
be correct (at least with respect to the specified model and properties).

We make the following research contributions:

– an MDP model of the Can semantics, supporting non-deterministic selections
and probabilistic action outcomes;

– an executable MDP model of Can with BigraphER for quantitative verifica-
tion and (optimal) strategy synthesis through PRISM and Storm;

– a simple example of smart manufacturing computes the probability analysis
of mission success and strategy synthesis, and a simple example of a rover
computes the reward probability of mission success and strategy synthesis.

Outline. In Sect. 2 we recall BDI agents and an MDP. In Sect. 3 we propose our
approach. In Sect. 4 we evaluate our approach to smart manufacturing and rover
examples. We discuss related work in Sect. 5 and conclude in Sect. 6.

2 Background

2.1 CAN

Can language formalises a classical BDI agent consisting of a belief base B and a
plan library Π. The belief base B is a set of formulas encoding the current beliefs
and has belief operators for entailment (i.e. B |= ϕ), and belief atom addition
(resp. deletion) B ∪{b} (resp. B \ {b})1. A plan library Π is a collection of plans
of the form e : ϕ ← P with e the triggering event, ϕ the context condition, and
P the plan-body. The triggering event e specifies why the plan is relevant, while
the context condition ϕ determines when the plan-body P is applicable.

The Can semantics are specified by two types of transitions. The first,
denoted →, specifies intention-level evolution on intention-level configurations
〈B, P 〉 where B is the belief base, and P the plan-body currently being executed.
The second type, denoted ⇒, specifies agent-level evolution over agent-level con-
figurations 〈Ee,B, Γ 〉, detailing how to execute a complete agent where Ee is the
set of pending external events to address (desires) and Γ a set of partially exe-
cuted plan-bodies (intentions). The intention-level Can configurations 〈B, P 〉
can be seen a special case of 〈Ee,B, Γ 〉 where Ee is an arbitrary set of event and
P ∈ Γ . We denote configurations as C.
1 Any logic is allowed providing entailment is supported.
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act : ψ ← 〈φ−, φ+〉 B � ψ

〈B, act〉 → 〈(B \ φ− ∪ φ+), nil〉 act
ϕ : P ∈ Δ B |= ϕ

〈B, e : (| Δ |)〉 → 〈B, P � e : (| Δ \ {ϕ : P} |)〉 select

〈B, P1〉 → 〈B′, P ′
1〉

〈B, (P1‖P2)〉 → 〈B′, (P ′
1‖P2)〉

‖1
〈B, P2〉 → 〈B′, P ′

2〉
〈B, (P1‖P2)〉 → 〈B′, (P1‖P ′

2)〉
‖2

Fig. 1. Examples of intention-level Can semantics.

e ∈ Ee

〈Ee, B, Γ 〉 ⇒ 〈Ee \ {e}, B, Γ ∪ {e}〉 Aevent
P ∈ Γ 〈B, P 〉 → 〈B′, P ′〉

〈Ee, B, Γ 〉 ⇒ 〈Ee, B′, (Γ \ {P}) ∪ {P ′}〉 Astep

P ∈ Γ 〈B, P 〉 �

〈Ee, B, Γ 〉 ⇒ 〈Ee, B, Γ \ {P}〉 Aupdate

Fig. 2. Agent-level Can semantics.

Figure 1 gives some semantics rules for evolving an intention. For example, act
handles the execution of an action (in the form of act = ψ ← 〈φ−, φ+〉), when the
pre-condition ψ is met, resulting in a belief state update (B\φ−∪φ+). Rule select
chooses an applicable plan from a set of relevant plans (i.e. B |= ϕ and ϕ : P ∈ Δ)
while retaining un-selected plans as backups (i.e. P �e : (| Δ\{ϕ : P} |)). Rules
‖1 and ‖2 specify how to execute (interleaved) concurrent programs (within an
intention). The full intention-level semantics is given in Appendix A. The agent-
level semantics are given in Fig. 2. The rule Aevent handles external events, that
originate from the environment, by adopting them as intentions. Rule Astep

selects an intention and evolves a single step w.r.t. the intention-level transition,
while Aupdate discards unprogressable intentions (either succeeded, or failed).

2.2 Markov Decision Processes

A Markov decision process (MDP) [22] is a tuple M = (S, s̄, α, δ) where S
is a set of states, s̄ an initial state, α a set of actions (atomic labels), and
δ : S × α → Dist(S) a (partial) probabilistic transition function where Dist(S)
is the set of the probability distribution over states S. Each state s of an MDP M
has a (possibly empty) set of enabled actions A(s) def= {a ∈ α | δ(s, a) is defined}.
When action a ∈ A(s) is taken in state s, the next state is determined probabilis-
tically according to the distribution δ(s, a), i.e. the probability that a transition
to state s′ occurs is δ(s, a)(s′). An MDP may have an action reward structure
i.e. a function of the form R : S × α → R≥0 that increments a counter when
an action is taken. An adversary (also known as a strategy or policy) resolves
non-determinism by determining a single action choice per state, and optimal
adversaries are those that e.g. minimise the probability some property holds.
This can be used to ensure, for example, the chance of system failure events is
minimised.



Quantitative Verification and Strategy Synthesis for BDI Agents 245

3 An MDP Model of CAN Semantics

MDPs model systems with nondeterministic and probabilistic behaviour. To use
an MDP with the Can semantics we associate Can rules with MDP actions and
Can states to MDP states. We refer to the MDP model of Can as Canm.

States in Canm are given by the agent-level configuration 〈Ee,B, Γ 〉 of Can.
The state space is S ⊆ 2Ee × 2B × 2Γ where the exact subset of states is deter-
mined by the specific program we are modelling2. An initial state of a Canm is
s̄ = 〈Ee

0 ,B0, Γ0〉. In practice, including our examples in Sect. 4, this usually has
the form Ee

0 = {e1, · · · , ej} (a set of tasks), B0 = {b1, · · · , bk} (an initial set of
beliefs, e.g. about the environment), Γ0 = ∅ (no intentions yet), and j, k ∈ N

+.
The Can semantics are defined using operational semantics with transitions

over configurations C → C′ (see Sect. 2.1). As we reason with probabilistic action
outcomes of agents, we instead use probabilistic transitions C →p C′, i.e. this
transition happens with probability p [26]. In our case, probabilities are intro-
duced by uncertain action outcomes of the agents (see Sect. 3.1).

To translate a (probabilistic) semantic rule named rule (Eq. (1)) to an MDP
action, we include an MDP action arule in the set of all MDP action labels and
define the transition function δ such that Eqs. (2) and (3) hold:

λ1 λ2 · · · λn

C →p C′ rule (1)

δ(C, arule) is defined iff λi holds in C with i ∈ {1, 2, · · · , n} (2)
δ(C, arule)(C′

) = p (3)

Condition (2) says a transition of Canm is only enabled if the transition
would be enabled in Can, i.e. the premises λi of rule are all met. Condition (2)
defines the probability of transitioning from C to C′ in Canm as the same as
the probability of transitioning in Can. The mapping of semantic rules to MDP
actions is applied to both intention and agent-level rules from Can.

The overview of our translation from Can to an MDP is depicted in Fig. 3.
Can features non-deterministic transition, e.g. for plan selection and choices
appear throughout both the agent and intention level transitions. Furthermore,
agent actions have probabilistic outcomes sampled from a distribution. The right-
hand of Fig. 3 presents our MDP model of Can with translated MDP actions
for each semantic rules. We detail this translation in the next sections.

3.1 Probabilistic Action Outcomes

Probabilistic transitions occur when we add support for probabilistic action out-
comes for agents. In Can, the semantic rule act gives a fixed outcome (belief
changes in the semantics; but also environment changes in real application) when
an agent action is executed. In practice agent actions often fail, e.g. there is a
chance an agent tries to open a door but cannot. To capture these uncertain
outcomes in agent actions, we introduce a new probabilistic semantic rule (same

2 We determine this by symbolically executing the program as we convert to an MDP.
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intention selection

Astep

event selection
Aevent

intention selection

Aupdate

e1 P3P2 P4 P5

concurrency selectionplan selection
select

probabilistic outcomes

actp

ϕ1 : P21 ϕ2 : P22 ‖1 ‖2 〈φ−
1 , φ+

1 →�〉 p1 〈φ−
2 , φ+

2 →�〉 p2

Can

aAstep(3) aAstep(4) aAupdate(5)aAstep(2)aAevent(1)

event selection intention selection intention selection

aselect(1) aselect(2)

plan selection

a‖1 a‖2

concurrency selection

aactp

〈φ−
1 , φ+

1 〉 〈φ−
2 , φ+

2 〉

probabilistic outcomes

1 1 1 1 1

1 1 1 1
p1 p2

MDP

Fig. 3. Left: Can semantic rule possibilities highlighting event, intention, plan, and
concurrency selection, and probabilistic agent action outcomes. Solid lines are agent-
level transitions and dashed lines are intention-level. Right: Corresponding MDP model
of Can semantic rules with empty circles as states and solid circles as MDP actions.

as in [14]) actp where μ = [(φ−
1 , φ+

1 ) �→ p1, . . . , (φ−
n , φ+

n ) �→ pn] is a user-specified
outcome distribution where μ(φ−

i , φ+
i ) = pi and

∑n
i=1 pi = 1.

act : ψ ← μ μ(φ−
i , φ+

i ) = pi B � ψ

〈B, act〉 →pi 〈(B \ φ−
i ∪ φ+

i ), nil〉 actp

For mapping intention-level Can configurations to MDP states we use the
fact that 〈B, P 〉 is a special case of 〈Ee,B, Γ 〉 where Ee is an arbitrary set of
event and P ∈ Γ allowing us to translate the intention-level semantic rules to
MDP actions according to the rule translation template in Eqs. (2) and (3). The
probabilistic nature of actp is reflected in the MDP action aactp :

δ(C, aactp)(C′) = pi s.t. C = 〈B, act〉, act : ψ ← μ, B � ψ,
μ(φ−

i , φ+
i ) = pi, and C′ = 〈B \ φ−

i ∪ φ+
i , nil〉

3.2 Intention-Level Semantics

The intention-level semantics (Fig. 1) specify how to evolve any single intention.
Most rules have deterministic outcomes with the exception of some rules such as
select (Fig. 1) which is non-deterministic, i.e. when we select a single applicable
plan from the set of relevant plans. To use rules like this in Canm we need to
lift the non-determinism, hidden within the rules, to non-determinism between
rules. We do this by introducing a new rule for each possible choice, e.g. a rule
for each possible plan that can be selected. As notation, we describe this set of
rules via a parameterised rules, e.g. select(n) as follows:

〈n, ϕ : P 〉 ∈ Δ B |= ϕ

〈B, e : (| Δ |)〉 →1 〈B, P � e : (| Δ \ {〈n, ϕ : P 〉} |)〉 select(n)

where n is an identifier for the plan and can be trivially assigned using positions
in the plan library (i.e. 1 ≤ n ≤ |Π|). Once we chose a plan rule, it is always
successful (p = 1) and it can be similarly translated into an MDP action, denoted
as aselect(n), using the previous translation template.
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3.3 Agent-Level Semantics

Agent-level Can rules (Fig. 2) determine how an agent responds to events and
progresses/completes intentions. There are three rules and each has a non-
deterministic outcome: Aevent that selects one event to handle from a set of
pending events; Astep that progresses one intention from a set of partially exe-
cuted intentions; and Aupdate that removes an unprogressable intention from a
set of unprogressable intentions. As with select in Sect. 3.2, to use these in the
Canm model we need to move from non-deterministic rules to a set of determin-
istic rules parameterised by the outcome. The new rules are:

〈n, e〉 ∈ Ee

〈Ee, B, Γ 〉 ⇒1 〈Ee \ {〈n, e〉}, B, Γ ∪ {〈n, e〉}〉Aevent(n)

〈n, P 〉 ∈ Γ 〈B, 〈n, P 〉〉 →p 〈B′, 〈n, P ′〉〉
〈Ee, B, Γ 〉 ⇒p 〈Ee, B′, (Γ \ {〈n, P 〉}) ∪ {〈n, P ′〉}〉Astep(n)

〈n, P 〉 ∈ Γ 〈B, 〈n, P 〉〉 �1

〈Ee, B, Γ 〉 ⇒1 〈Ee, B, Γ \ {〈n, P 〉}〉Aupdate(n)

Event parameters are specified by numbering them based on an ordering
on the full set of events, e.g. 〈n, e〉 with n ∈ N

+ as an identifier. We identify
(partially executed) intentions based on the identifier of the top level plan that
led to this intention, e.g. for P ∈ Γ we assign a label n ∈ N

+ that is passed
alongside the intention. This style of labelling assumes only one instance of an
event can be handled at once (this is enough to imply the top level plans are also
unique). As with select the transition probability is 1 in the cases of Aevent(n)
and Aupdate(n) as the rule, if selected, always succeeds. The (omitted) MDP
actions for rules Aevent(n) and Aupdate(n) can be similarly given as aAevent(n)

and aAupdate(n), respectively. The rule Astep(n) says that agent-level transitions
depend on the intention-level transitions and we need to account for this in the
transition probabilities. Formally, we have:

δ(〈Ee, B, Γ 〉, aAstep(n))(〈Ee, B′, Γ \ {〈n, P 〉}) ∪ {〈n, P ′〉}) = p iff
〈n, P 〉 ∈ Γ and δ(〈B, 〈n, P 〉〉, arule)(〈B′, 〈n, P ′〉〉) = p

where arule denotes the MDP action for the equivalent semantic rule in Can
that handles the intention-level transition of 〈B, 〈n, P 〉〉 →p 〈B′, 〈n, P ′〉〉.

3.4 Rewards

While an MDP allows action rewards to be assigned to any action, and there-
fore Can rule, they are particularly useful for the parameterised rules. In
practice, as it is difficult to specify all current states of an agent (needed for
the configuration), we apply rewards based only on the action chosen, e.g.
R(C, arule) = R(arule) = rrule. With this, we can choose preferred parame-
ters by assigning higher reward values, e.g. R(aselect(1)) < R(aselect(2)). Usually
we give non-zero rewards to MDP actions that correspond to selection (e.g. plan
selection) for strategy synthesis later on. For other MDP actions the reward is 0.
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s0 act
s2

s1

· · ·
sn

act = {r1 = L0
w1 � R1, r2 = L0

w2 � R2, · · · , rn = L0
wn � Rn}

where L0 encodes state s0, Ri encodes si (i = 1, · · · , n), and
wi∑n
j=1 wj

= pi

p2

p1

p
n

an MDP action
a (non-empty) set of reaction rules in bigraphs

Fig. 4. Left: MDP action act applying to state s0 with a probability pi reaching to the
state si ((i ∈ {1, · · · , n}). Right: corresponding bigraph reaction rules to encode act.

4 Implementation and Examples

Using a simple smart manufacturing and rover example, we show how our app-
roach can quantitatively analyse/verify agent programs and synthesise the (opti-
mal) strategies. Specifically, we evaluate the probabilistic properties for smart
manufacturing and reward-based properties for the rover example together with
their optimal strategy synthesis. The results show we can detect undesired exe-
cutions (that result in mission failure) and generate different optimal strategies
that can maximise either probability-based or reward-based objective. While we
only give details of two simple cases, users of the executable model can “run”
models with different external events and plan libraries. The examples shown in
this paper and instructions on reproducibility are open available in [27].

4.1 Bigraph Encoding of CANm Model

We use Milner’s bigraphs [20]—a graph-based rewriting formalism—to encode
our Canm model. As a graph-based rewriting formalism, over customised rules
called reaction rules, bigraphs provide an intuitive diagrammatic representation
to model the execution process of the systems. Applying a reaction rule, L � R,
replaces an occurrence of bigraph L (in a bigraph) with bigraph R. Given an
initial bigraph (i.e. initial system state) and a set of reaction rules (i.e. system
dynamics), we obtain a transition system capturing system behaviours for for-
mal verification. Bigraphs allow reaction rules to be weighted, e.g. r = L

3 �R

and r′ = L
1 � R′, such that if both (and only) r and r′ are applicable then r

is three times as likely to apply as r′. Non-deterministic choices (e.g. an MDP
action) can be modelled as a non-empty set of reaction rules. For example, we
can have an MDP action a = {r, r′} and once it is executed, it has a distri-
bution of 75% transition from L to R and 25% from L to R′. Figure 4 depicts
how to encode any MDP action in bigraphs. To execute our bigraph model,
we employ BigraphER [23], an open-source language and toolkit for bigraphs. It
allows exporting transition systems of an MDP, and states may be labelled using
bigraph patterns that assign a state predicate label if it contains (a match of) a
given bigraph. The labelled MDP transition systems are exported for quantita-
tive analysis and strategy synthesis in PRISM and Storm. We use PRISM3 (for
3 PRISM currently does not support reward import.
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non-reward properties) and Storm (for reward-based properties) by importing
the underlying MDPs produced by BigraphER. We reason about the minimum
or maximum values of properties such as Pmax=?F[φ] in Probabilistic Compu-
tation Tree Logic (PCTL) [28]. Pmax=?F[φ] expresses the maximum probability
of φ holding eventually in all possible resolutions of non-determinism.

4.2 Example: Smart Manufacturing

We revisit the robotic packaging scenario from [14] where a robot packs prod-
ucts and moves them to a storage area. Previously, this example was quantita-
tively analysed using probabilistic model checking, but all non-determinism was
resolved using pre-defined strategies (fixed, round-robin, probabilistic choice).
Here, we wish to find a good strategy without assuming one.

The example is as follows: a robot is designed to pick a product from a
production line, insulate them with either cheap or expensive wrapping bags
(to prevent decay) and then move them to storage. Complexity arises from: (1)
success depends on when a product is packed (e.g. before it decays), (2) when a
product is packed determines which wrappings are applicable as earlier packing
means cheaper bags, and (3) both wrappings introduce uncertainty as they may
fail to insulate or break.

The agent program for a scenario with two initial products is given in List-
ing 1.1. We assume the agent uses a propositional logic with numerical compar-
isons. Products awaiting processing are captured by external events in line 4. The
agent responds to the events using a declarative goal on line 6 stating it wants
to achieve the state success1 (i.e. wrapped and moved) through addressing the
(internal) event process product1; failing if failure1 (i.e. dropped or decayed) ever
becomes true. Two plans (in lines 7–8), representing the different wrappings,
handle the event process product1 depending on the deadline for the product.
Event product2 is handled similarly (line 9–11). We encode (discrete) temporal
information for the deadline as agent belief atoms. This should not be viewed
as general support clocks in an MDP. Instead, these temporal information is
simply modelled as numerical belief atoms and we update these belief atoms
in the background, without executing any explicit MDP action. The deadline
decreases after a step of any intention or the selection of any event. We have
deadline1 = 10 and deadline2 = 14 as initial deadlines of product1 and product2
in line 2. The choice of these initial values was made by the agent designer. Our
approach enables the analysis of alternative values quantitatively before deploy-
ing the agent. There is a probabilistic outcome for the agent action of both
wrap standard1 and move product standard1, such that they carry a 30% chance
of causing the belief failure1 to hold by failing to insulate and dropping the prod-
uct accidentally. Meanwhile, there is only 10% change of causing insulation fail-
ure or product dropping by action wrap premium1 and move product premium1.
Due to space limits, we omit the action descriptions. Full agent examples are
online [27].
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Listing 1.1. Can agent for smart manufacturing

1 // Initial belief bases
2 deadline1 = 10, deadline2 = 14
3 // External events
4 product1 , product2
5 // Plan library
6 product1 : true <- goal(success1 ,process_product1 ,failure1).
7 process_product1 : deadline1 ≥ 3 <- wrap_standard1; move_product_standard1.
8 process_product1 : deadline1 ≥ 0 <- wrap_premium1; move_product_premium1.
9 product2 : true <- goal(success2 ,process_product2 ,failure2).

10 process_product2 : deadline2 ≥ 3 <- wrap_standard2; move_product_standard2.
11 process_product2 : deadline1 ≥ 3 <- wrap_premium2; move_product_premium2.

Listing 1.2. A list of properties with its associated value for smart manufacturing
where PS1 and PS2 denote product1 and product2 successfully being processed, and
Pch1 and Pch2 denote cheap bag selected for product1 and product2, respectively.

1 Pmin=?F[PS1 ∧ PS2] (value 0)
2 Pmax=?F[PS1 ∧ PS2] (value 0.6561)
3 Pmax=?F[PS1 ∧ PS2 ∧ Pch1 ∧ Pch2] (value 0)
4 Pmax=?F[PS1 ∧ PS2 ∧ (Pch1 ∨ Pch2)] (value 0.3969)

Quantitative Verification and Strategy Synthesis. For analysis we label
states where properties of interest hold. We use PS1 and PS2 to denote product1
and product2 being successfully processed by the robot. Pch1 and Pch2 hold
when the cheaper bag was selected to handle product1 and product2 respectively.
A full list of properties checked for this example is in Listing 1.2.

Property Pmin=?F[PS1∧PS2] checks the minimum probability of both prod-
ucts being processed successfully over all possible adversaries. This property
returns a value of 0 meaning there is a possible situation where the robot fails to
handle both products, e.g. careless decision making causes failed deadlines. Prop-
erty Pmax=?F[PS1 ∧ PS2] determines the best possible outcome (both products
processed) and returns a value of 0.65614, which implies there exists an adver-
sary that the robot can handle both products with moderate success. Given
this property, PRISM can automatically synthesise an adversary (strategy) for
achieving this property. That is, a list of MDP actions to be taken in each state.
Here the optimal adversary instructs the robot to wrap more urgent products
(i.e. product1) first until it is packed and then switch to wrap the other prod-
uct. As expected, in both cases the expensive bag is used. Only after both are
wrapped does the robot move them to storage.

The property Pmax=?F[PS1 ∧ PS2 ∧ Pch1 ∧ Pch2] checks if there is a way
to successfully handle both products while using cheap bags for both of them.
The value is 0, confirming it is impossible to do so. We can use the property
Pmax=?F[PS1∧PS2∧ (Pch1∨Pch2)] to determine if it is possible to use a cheap
bag for either product. This is possible (p = 0.3969) by adapting the optimal
strategies from before to use a cheap bag for product1.

4 This probability is never 1 as there is always a chance bags fail regardless of type.
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Fig. 5. Value of the property Pmax=?F[PS1∧ PS2] and Pmax=?F[PS1∧ PS2∧ (Pch1∨
Pch2)] with increasing failure probability in cheap and expensive bags.

Action Outcome Analysis. The effects of different failure probability for
cheap and expensive bag are shown in Fig. 5 where the probability of bag failing
to insulate or breaking is increased from 0 to 1. We can see that the value of the
property Pmax=?F[PS1∧PS2] and Pmax=?F[PS1∧PS2∧ (Pch1∨Pch2)] shows a
decreasing trend with increasing failure probability in both cheap and expensive
bag. When the failure probability of both types of bags equals to 0 or 1, the
values of these two properties coincide with each other with either total success
of probability 1 or total failure of probability 0. As expected, the probability of
successfully handling two products is always higher than the one which requires
cheap bags to be used because of the larger failure probability from the cheap
bag than the expensive bag.

4.3 Example: Rover

We consider a rover scenario where the rover travels to a set of sites assigned
by the mission centre for scientific experiments, e.g. to collect rocks or analyse
soil. Given multiple sites to visit, the rover must choose one. Once chosen, the
robot must then decide the route to use: some routes are shorter than others
(plan selection). The mission is to successfully visit all sites, perform required
experiments, and return to base.

To illustrate how much impact careless interleavings can make to the resulting
agent behaviours, we use a very simplified scenario with only two sites to visit
(i.e. a very small plan library). The agent program is in Listing 1.3. The rover
has two sites to visit, which are captured by external events site1 and site2 in
line 4, and is initially at the base (at base in line 2). To address event site1,
the plan on line 6 instructs the rover to pursue two ordered (internal) events,
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Listing 1.3. Can agent for rover.

1 // Initial belief bases

2 at_base

3 // External events

4 site1 , site2

5 // Plan library

6 site1 : true <- experiment_site1 ;return_to_base.

7 site2 : true <- experiment_site2 ;return_to_base.

8 experiment_site1 : at_base <- move_base_to_site1; perform_experiment_site1.

9 experiment_site1 : at_site1 <- perform_experiment_site1.

10 experiment_site1 : at_site2 <- move_site2_to_site1; perform_experiment_site1.

11 experiment_site2 : at_base <- move_base_to_site2; perform_experiment_site2.

12 experiment_site2 : at_site1 <- move_site1_to_site2; perform_experiment_site1.

13 experiment_site2 : at_site2 <- perform_experiment_site2.

14 return_to_base: at_base <- do_nothing.

15 return_to_base: at_site1 <- move_site1_to_base.

16 return_to_base: at_site2 <- move_site2_to_base.

namely experiment site1 and return to base. The first event experiment site1 can
be achieved by plans from lines 8 to 10 depending on where the rover is. For
example, if the rover is at the base, the plan on line 8 instructs it to move to site 1
and perform necessary experiments. After successfully performing experiments
the rover returns to base (return to base) through plans in lines 14–16. Event
site2 can be handled in a similar way. In this case, we assume each moving agent
action (e.g. move base to site1) always succeeds. It allows us to easily reason
about reward-based properties as any state with the reachability probability of
less than 1 will always give an infinite reward. Full agent examples including
action descriptions are online [27]. We use SS1 and SS2 to denote site1 and site2
successfully being processed by the rover and use Storm for model analysis.

We first check property Pmin=?F[SS1 ∧ SS2] to see if there is a case where
neither site visit is successful and, unexpectedly, the return value of 0 confirms
this is possible. This shows, even in such a simple case, careless interleaving can
cause issues: in this case movements back and forth between different locations
without processing. For example, the rover may have moved to site 1, but before
performing the experiment at site 1, it decides to address event site2 and moves
to site 2. This behaviour then repeats in reverse. As the Can semantics (seman-
tic rule �⊥ in Appendix A) remove used plans on failure, the rover can enter a
situation where there is no plan left to move and the mission cannot continue. We
then check the property Pmax=?F[SS1∧SS2] whose value is 1, confirming there is
a way to analyse both sites. However, the optimal adversary (regarding the prob-
ability) returned by Storm makes unnecessary, but non-detrimental, movement
between locations. To ensure the rover achieves the tasks while minimising trav-
elling distance, we use rewards properties Rmin=?F[SS1∧SS2] and the expected
strategy (visit and process each in turn and then return) is synthesised.
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Fig. 6. Trade-offs between property Pmax=?F[PS1 ∧ PS2] (successfully handling two
products) and Pmax=?F[Pch1∨Pch2] (using cheap bag for either product). The red and
blue point stand for two possible deterministic adversaries that always make the same
choice in a given state of the model. Any point (e.g. black one) in the line between red
and blue point represents a pair of mission objectives having randomised adversaries.
(Color figure online)

4.4 Discussion

Our framework gives agent designers an indication of the type of strategies
that may be needed for a given application. For example, it gives confidence
to either use a fixed strategy, such as the ordered schedule in the rover example,
or justify the need for advanced planning capability. As we target the semantics
rather than a specific implementation, it is possible to modify these in future to
determine if other languages might be more suitable before implementation. For
instance, in the rover example, the decision by Can to throw away failed plans
caused issue, while a different language design could avoid this pitfall.

The framework also allows verifying several, possibly conflicting, quantitative
properties of an agent system. For example, we can ask how to maximise the
probability of achieving the packing tasks while using cheap bags. PRISM can
compute (approximately) the Pareto curve [29] shown in Fig. 6, which provides
a useful visualization of trade-offs between different mission objectives and can
help the agent designers prioritize objectives. Once the agent designer selects
a combination of mission objective values in the line, a corresponding strategy
can be automatically synthesized. In detail, the blue and red points stand for
two pairs of objective values that have deterministic adversaries i.e. they always
make the same choice in a state of the model. Any point (e.g. the black dot) on
the line (except blue and red points) represents the pair of objective values that
can be achieved by randomised strategy that makes an initial one-off random
non-deterministic choice. However, it remains unclear how to interpret these
randomised strategies, and this is an interesting area for future work.

We also note it is difficult to reason about the accumulated rewards for
reaching some target set of states if these states cannot be eventually reached
with probability 1. A good example would be to maximise the probability of
achieving a mission state while minimising the cost of reaching it. It is due to a
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choice that both PRISM and Storm made when designing the reward property
specification. They assume that if there is a non-zero probability of not reaching
the target state (i.e. the probability of reaching it is less than 1), it is reasonable
to say the path continues indefinitely without reaching the target state (i.e. the
overall expected reward for being infinite). A potential solution is to use the
state reward (a certain amount of rewards is assigned if a certain state holds).
Then the reward information can be specified as a temporal formula in property
specifications. (e.g. what is the maximum probability of reaching this state which
gives some certain reward). Unfortunately, this makes modelling and reasoning
more cumbersome, and future work is required to investigate this.

5 Related Work

Optimal decision-making under uncertainty is a core problem in Artificial Intel-
ligence (AI). A prime example is planning [15,16]: studying how to find good or
optimal strategies to maximise rewards or the probability of reaching a goal and
MDPs are also used as a fundamental mathematical models for planning. For-
mal verification coincides with planning when formulas in temporal logic express
reachability goals (i.e. a set of final desired states) and verification methods are
used to extract a particular evolution of the system that makes temporal for-
mulas true. That is, verification focuses on checking if (reachability) properties
hold for a system and obtaining strategies is a side effect. Our aim is not to
compete with AI planning, but to use planning-like benefits in our verification
framework for BDI agents. A prominent sub-field for finding good strategies is
through reinforcement learning (RL) [30]. RL automatically trains agents to take
actions to maximise a reward in an uncertain environment. Here, a concise spec-
ification of an MDP (capturing both the agent and the environment) is executed
in an initially random manner and over time RL improves the reward of every
state-action pair executed to yield good strategies. There has been promising
work unifying planning, learning and verification [31].

The BDI community is interested in event, plan and intention selection
strategies and this is usually done through modifying or replacing the orig-
inal BDI reasoning entirely with other decision-making techniques. Although
most BDI agent languages specify selection choices (e.g. plan selection) made
by the agent in non-deterministic fashion, it is typical in practice to constrain
the overwhelming non-determinism through ordering—either statically [7] or at
run-time [32]—to enforce simple deterministic behaviours. While desirable to
exploit the highest ordered choices, it may be worthwhile exploring other non-
highest order ones every now and then to avoid being stuck in a local maximum.
Some selection strategies use advanced planning algorithms [33,34]. For exam-
ple, in [35] agent programs are compiled to TÆMS framework to represent the
coordination relations e.g. “enables” and “hinders” between tasks and employ
the Design-To-Criteria scheduler for intention selection. Other works show many
of the intention progress issues can be modelled as AI planning problems and
resolved through suitable planners [36]. An increasingly popular topic is inten-
tion progression [37], e.g. the contest [38], that helps the agent to make better
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decisions on event/plan/intention selection. Our approach not only ensures the
safety of agent behaviours through formal verification, but also the quality of
agent decision-making through optimal adversary generation. Finally, it is not a
new idea to integrate advanced decision-making techniques into BDI. There is a
large body of work [33] to employ planning to synthesise new plans to achieve an
event when no pre-defined plan worked or exists. For example, work [39] shows
how the integration of planning and BDI can be done at the semantic level.

Verifying BDI agents using model checking, via Java PathFinder [11], and
theorem proving, using Isabelle/HOL [12] has also been explored. However, these
use fixed schedulers for agent selections strategies, e.g. first-in-first-out for inten-
tion selection, and do not allow probabilistic action outcomes for the agents.
Verification and strategy synthesis have also been successfully applied to many
traditional probabilistic systems (e.g. security systems or protocols) overviewed
in [18]. The contribution of our work applied both verification and strategy syn-
thesis to ensure correct and optimal BDI agent behaviours (which features non-
deterministic choices and probabilistic action outcomes) with the potentiality
such as for multi-objective analysis.

6 Conclusions

Quantitative verification is a powerful technique for analysing systems that
exhibits non-deterministic and probabilistic behaviours, allowing us to verify
and synthesise strategies for autonomous agents operating in uncertain environ-
ments.

We have translated the Can language, which formalises the behaviour of a
classical BDI agent, to an Markov Decision Process model. This supports both
non-deterministic decision-making (e.g. which plan to select) and probabilistic
agent action outcomes (e.g. imprecise actuators). The resulting model, Canm,
is encoded and executed using Milners bigraphs and the BigraphER tool. This
allows quantitative analysis and strategy synthesis using popular probabilistic
model checking tools including PRISM and Storm.

Through two simple examples, we have shown our approach can help the
agent developers to reason about probability and reward-based properties and
synthesise optimal strategies. We also reflect on how quantitative verification
and strategy synthesis can aid or improve BDI agent system design and imple-
mentation, and propose some future work (e.g. multi-objective analysis).
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SRF grant MAGIC (EP/S035362/1), S4: Science of Sensor Systems Software
(EP/N007565/1), and an Amazon Research Award on Automated Reasoning.
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A Appendix

The language used in the plan-body in Can is defined by the grammar:

±b | act | e | P1;P2 | P1 � P2 | P1 ‖ P2 | goal(ϕs,P , ϕf )

where ±b stands for belief addition and deletion, act a primitive agent action,
and e is a sub-event (i.e. internal event). Actions act take the form act = ψ ←
〈φ+, φ−〉, where ψ is the pre-condition, and φ+ and φ− are the addition and
deletion sets (resp.) of belief atoms, i.e. a belief base B is revised to be (B\φ−)∪
φ+ when the action executes. To execute a sub-event, a plan (corresponding to
that event) is selected and the plan-body added in place of the event. In this way
we allow plans to be nested (similar to sub-routine calls in other languages). In
addition, there are composite programs P1;P2 for sequence, P1�P2 that executes
P2 in the case that P1 fails, and P1 ‖ P2 for interleaved concurrency. Finally, a
declarative goal program goal(ϕs,P , ϕf ) expresses that the declarative goal ϕs

should be achieved through program P , failing if ϕf becomes true, and retrying
as long as neither ϕs nor ϕf is true (see in [19] for details).

Figure 7 gives the complete set of semantic rules for evolving an intention.
For example, act handles the execution of an action, when the pre-condition ψ
is met, resulting in a belief state update. Rule event replaces an event with the
set of relevant plans, while rule select chooses an applicable plan from a set of
relevant plans while retaining un-selected plans as backups. With these backup
plans, the rules for failure recovery �;, �
, and �⊥ enable new plans to be
selected if the current plan fails (e.g. due to environment changes). Rules ; and
;
 allow executing plan-bodies in sequence, while rules ‖1, ‖2, and ‖
 specify
how to execute (interleaved) concurrent programs (within an intention). Rules
Gs and Gf deal with declarative goals when either the success condition ϕs

or the failure condition ϕf become true. Rule Ginit initialises persistence by
setting the program in the declarative goal to be P � P , i.e. if P fails try P
again, and rule G; takes care of performing a single step on an already initialised
program. Finally, the derivation rule G� re-starts the original program if the
current program has finished or got blocked (when neither ϕs nor ϕf is true).
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act : ψ ← 〈φ−, φ+〉 B � ψ

〈B, act〉 → 〈(B \ φ− ∪ φ+), nil〉 act

Δ = {ϕ : P | (e′ = ϕ ← P ) ∈ Π ∧ e′ = e}
〈B, e〉 → 〈B, e : (| Δ |)〉 event

ϕ : P ∈ Δ B |= ϕ

〈B, e : (| Δ |)〉 → 〈B, P � e : (| Δ \ {ϕ : P} |)〉 select

〈B, P1〉 → 〈B′, P ′
1〉

〈B, P1 � P2〉 → 〈B′, P ′
1 � P2)〉 �; 〈B, (nil � P2)〉 → 〈B′, nil〉 ��

P1 �= nil 〈B, P1〉 � 〈B, P2〉 → 〈B′, P ′
2〉

〈B, P1 � P2〉 → 〈B′, P ′
2〉

�⊥

〈B, P 〉 → 〈B′, P ′〉
〈B, (nil;P )〉 → 〈B′, P ′〉 ;�

〈B, P1〉 → 〈B′, P ′
1〉

〈B, (P1;P2)〉 → 〈B′, (P ′
1;P2)〉 ;

〈B, P1〉 → 〈B′, P ′
1〉

〈B, (P1‖P2)〉 → 〈B′, (P ′
1‖P2)〉 ‖1

〈B, P2〉 → 〈B′, P ′
2〉

〈B, (P1‖P2)〉 → 〈B′, (P1‖P ′
2)〉

‖2

〈B, (nil‖nil)〉 → 〈B, nil〉 ‖�

B |= ϕs

〈B, goal(ϕs,P , ϕf )〉 → 〈B, nil〉 Gs
B |= ϕf

〈B, goal(ϕs,P , ϕf )〉 → 〈B, ?false〉 Gf

P �= P1 � P2 B � ϕs B � ϕf

〈B, goal(ϕs,P , ϕf )〉 → 〈B, goal(ϕs,P � P, ϕf )〉 Ginit

B � ϕs B � ϕf 〈B, P1〉 → 〈B′, P ′
1〉

〈B, goal(ϕs, P1 � P2, ϕf )〉 → 〈B′, goal(ϕs, P ′
1 � P2, ϕf )〉 G;

B � ϕs B � ϕf 〈B, P1〉 �

〈B, goal(ϕs, P1 � P2, ϕf )〉 → 〈B, goal(ϕs, P2 � P2, ϕf )〉 G�

Fig. 7. Complete intention-level Can semantics.
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