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ABSTRACT

The Belief-Desire-Intention (BDI) architecture, where agents are modelled based on their (B)eliefs,
(D)esires, and (I)ntentions, provides a practical approach to developing intelligent agent systems.
These agents operates by context sensitive expansion of plans, thus allowing fast reasoning cycle.
However, the practical capability of BDI agents can still remain limited due to the lack of abilities
to handling execution failure, adapting to the environment, and pursuing multiple intentions
correctly and efficiently. In this thesis, we will address these issues in the following ways.

Firstly, we introduce a novel operational semantics for incorporating First-principles Planning
(FPP) to recover execution failure by generating new plans when no alternative pre-defined plan
exists or worked. Such a semantics provides a detailed specification of the appropriate operational
behaviour when FPP is pursued, succeeded or failed, suspended, or resumed in BDI. Therefore,
the robustness of a BDI agent can be substantially improved when facing unforeseen situations.

Secondly, we advance the state-of-the-art in BDI agent systems by proposing a plan library
evolution architecture with mechanisms to incorporate new plans (plan expansion) and drop
old/unsuitable plan (plan contraction) to adapt to changes in a realistic environment. Such a
proposal follows a principle approach to define plan library expansion and contraction operators,
motivated by postulates that clearly highlight the underlying assumptions, and quantified by
decision-support measure information. Therefore, the adaptivity of BDI can be improved for a
fast-changing environment.

Thirdly, we provide a theoretical framework where FPP is employed to manage the intention
interleaving in an automated fashion. Such a framework employs FPP to plan ahead to not
only avoid the potential negative intention interactions, but also capitalise on their positive
interactions (i.e. overlapping sub-intentions). As a benefit, the achievability of intentions (i.e. a
correct execution) is guaranteed, and the overall cost of intentions execution is reduced (i.e. an
efficient execution).
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1
INTRODUCTION

Ever since the invention of the computers, there has been a vast amount of approaches to

programming developed over time spanning from early mechanical computers to modern tools for

software development. In early approaches to programming, the programming languages usually

directly represent the instructions machine codes, thus conventionally being identified as the

so-called low-level languages. Later on, the high-level programming languages are introduced to

enable using vocabularies related to actual programming problems because of the development

of compiler theory, thus making program development simpler and more understandable. One of

the popular representatives is the object-oriented programming languages based on the concept

of objects. In these languages (e.g. Java), the instructions are encapsulated into objects (e.g.

providing methods with variables) and the computer programs are designed by having objects as

basic modules interacting with one another. Nowadays, given the growing presence of intelligent

agents (e.g. robots), there has been a new programming paradigm, namely the Agent-oriented

Programming (AOP) languages, which designs the computational system from a mentalistic view

consisting of state of basic units such as beliefs, obligations, and capabilities.

Intuitively, the construction of the computer programs in AOP languages is to specify a

(software) agent as if it has “mental states". In work of [Sho93], which first articulated the

concept of AOP, the agent is considered to be an entity in which its state is composed of human-

like mental components, e.g. beliefs and commitments. Naturally, these mental components

originate from their common sense counterparts which are part of our everyday linguistic ability.

To correctly correspond to the common sense use of the mental terms, however, there is often

a precise theory regarding the particular mental category. Expectedly, the variance of agent

systems depends on the types of mental components that an agent system is viewed as possessing.

By ascribing mental qualities to machines with associated precise theories, AOP languages can

thus offer the programmers not only a familiar, non-technical way to talk about complex systems,
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but also a formal vehicle to build (software) agents which is more likely to exhibit the degree of

“intelligence”, e.g. flexible (reactive, proactive, social) autonomous behaviours. This is particularly

appealing and important nowadays when robotics and autonomous systems have already been

identified as one of the eight great technologies [Wil13] with the potential to revolutionise our

economy and society.

Belief-Desire-Intention (BDI) agent paradigm, which will be used throughout this thesis, is

one of the predominant approaches for AOP languages to designing intelligent agent systems

via the mental component of Beliefs, Desires, and Intentions. In particular, it has been claimed

that the employment of BDI agent technology in complex business settings can improve overall

project productivity by an average 350−500% according to an industry study [BHG06]. In this

thesis, we develop a number of extensions to BDI agents to advancing its capabilities, of which

we outline the underlying motivations and ideas in Section 1.1 and Section 1.2. The extensions

of BDI agents that we present mostly rely on the advanced planning techniques (the details

of which are discussed in Section 1.3). As a consequence, our planning-centric BDI agents can

not only cope with potential failure during execution to remain robust, but also think ahead

to ensure correct and efficient execution when pursuing multiple tasks. In particular, we also

investigate how a BDI agent can adopt the new knowledge, e.g. from the external planning tools,

and discard its obsolete and erroneous knowledge to adapt to a changing environment. Before we

can explore these topics and present our contributions, we first describe the foundation of BDI

agent framework and one classical line of BDI languages, namely AgentSpeak and Conceptual

Agent Notation (CAN), in Section 1.1 and Section 1.2, respectively.

1.1 Belief-Desire-Intention Agents

The BDI agency model [Bra87, BIP88], as the most dominant and mature outputs of the AOP

community, specifically targets the modelling of intelligent agent based on three mental cate-

gories, namely (B)eliefs, (D)esires, and (I)ntentions. Intuitively, the beliefs of the agent represent

knowledge that the agent has about the environment in which it is situated. Since these beliefs

are from the perspective of the agent, they can be incomplete or even incorrect (e.g. mistaken that

it is rainy today). The desires of the agent, meanwhile, are all the possible state of affairs that the

agent might want to bring about in an ideal world. In principle, the agent can have a set of incon-

sistent desires (e.g. the desires of humans are often inconsistent). However, the set of intentions

must be consistent where intentions are those desires that an agent has committed to achieving.

In fact, it would be irrational for an agent to entertain two options that are inconsistent with

each other. To illustrate, the agent can desire as it wishes, e.g. to be in both London and Dublin

tomorrow. Still, the physical law forbids it from actually being in both these two places tomorrow.

In other words, it cannot actually intend to be both in London and Dublin tomorrow because

these two intentions are inconsistent. Finally, even if all desires of an agent are consistent, the
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agent generally will not be able to commit to all its desires in a realistic environment due to

the bounded resources [Sim72]. Therefore, an agent typically has to fix upon some subset of its

desires and commits its resources to achieve them only.

To build an intelligent agent, the BDI paradigm is particularly appealing because it provides

a sound philosophical foundation, clear logic and semantics, and a collection of mature agent-

oriented programming languages and platforms. We now succinctly explain these three key

components of BDI model one by one. Firstly, the philosophical root of BDI model is in the

philosophical tradition of understanding practical reasoning in humans, deciding moment by

moment which action to do next. At its simplest, practical reasoning is the process of figuring out

what to do (i.e. reasoning directed towards actions). Formally speaking, the practical reasoning is

a matter of weighing conflicting considerations for and against completing options, where the

relevant considerations are provided by what the agent desires, values, and cares about, and

what the agent believes [Bra90]. In detail, practical reasoning consists of two distinct activities,

namely deliberation and mean-end reasoning. Whereas the process of deliberation decides what

state of affairs the agent wants to achieve, the means-end reasoning involves deciding how to

achieve these states of affairs.

Secondly, the theory in the family of BDI logic has also been rigorously formalised. As such,

the different mentalistic concepts (e.g. intentions) and their relationship can be studied in

a formal setting. The theory of intention in practical reasoning is first formalised by Cohen

and Levesque in [CL90] where a composition concept of intention is given, namely (i) chosen

desires, (ii) persistent desires, and (iii) intentions. By construction, chosen desires are consistent.

Meanwhile, persistent chosen desires amount to intentions. In contrast to treating intentions as

being reducible to beliefs and desires, Rao and Georgeff [RG91] embraces a primitive notion of

intention which has equal status with the notions of belief and desire to define different strategies

of commitment. This primitive notion of intention allows flexibility to define different strategies

of commitment with respect to the intentions of an agent by imposing certain conditions on the

persistence of the beliefs, desires, and intentions. For instance, an agent assigned with the blind

commitment will maintain an intention until it is believed by the agent that such an intention

has been achieved.

Finally, a multitude of BDI languages and software platforms has also been developed

along with philosophical and logic research advancement in BDI paradigm. Notably, one of

the earliest implementations inspired by the BDI model is the so-called Procedural Reasoning

System (PRS) [GL87]. In PRS implementations, the agent beliefs are directly represented in the

form of Prolog-like facts [Bra01], while the desires and intention are realised through the use of

a plan library (i.e. a collection of plans). In each plan, it consists of a body, which describes the

steps to achieve its goal, and an invocation condition that specifies under which situations the

agent should consider applying such a plan. From a conceptual standpoint, the PRS agent works

simply by choosing plans to respond to active goals given the current beliefs. As a consequence,
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unlike those logic formalisations discussed previously (e.g. [RG91]) which tend to be inefficiently

computable, the PRS implementations are suitable for building practical BDI agent systems.

1.2 AgentSpeak and CAN

While the PRS framework is a useful system for implementing the BDI model, its practical

perspective makes it difficult to investigate its theoretical properties such as soundness and,

furthermore, to examine itself in contrast with other aforementioned theoretical works (e.g.

[RG91]). To this end, the AgentSpeak language [Rao96] is proposed in a sufficiently simple,

uniform language framework. In essence, the AgentSpeak language can be reviewed as an

abstraction of PRS in a formal setting. Indeed, AgentSpeak retains the key features of PRS

systems but allows the programs of the agent to be constructed in a fashion close to the logic

programming (whose details is given in Section 2.2). Therefore, it would be possible to investigate

it from a theoretical point of view, for example, by giving it a formal semantics.

To design an AgentSpeak agent, it needs specifying by beliefs, intentions, a set of events,

and plan rules. The set of the base beliefs is the specification of the agent, which represents

what it believes to be true. Formally, the set of base beliefs is a collection of grounded atoms (e.g.

male(Bob) encoding that Bob is male), as in traditional logic programming (which is discussed in

more details in Section 2.2). The set of plan rules is called to be the plan library of an agent. In

AgentSpeak language, the agent does not produce the plan from scratch. Instead, it is equipped

with a library of pre-defined plans. These plans are manually constructed, in advance, by the

agent programmers. Each plan in AgentSpeak has three following components, namely (i) a

triggering event, (ii) a context condition, and (iii) a plan-body. In detail, the triggering event

defines what the plan is good for, i.e. the goals that it can achieve. The context condition of an

AgentSpeak plan, however, articulates when such a plan is good for. In other words, the context

condition of a plan defines what must be true of the environment in order for this plan to be

applied. Normally, a plan will only be applied to achieve the event which matches its triggering

event when the context condition of such a plan holds in its current set of base beliefs. Finally,

the plan-body of a plan in AgentSpeak encodes procedural information on how to respond to its

associated event. Such procedural information usually consists of entities such as actions, which

are executed directly by the agent, and some internal events (as subgoals) which require further

refinement (i.e. selecting plans for such internal events) to execute their corresponding actions.

In a nutshell, an AgentSpeak agent addresses events (i.e. the inputs to the agent systems) by

(i) selecting plans from the plan library, (ii) placing it into the intention set, and (iii) selecting

intention to progress to address the events. The Figure 1.1 depicts such an event-driven reasoning

cycle of an AgentSpeak agent. In detail, given a pending event to deal with, the agent starts with

searching through the plan library to find a suitable pre-defined plan at run time. The first step

of this searching is to retrieve all plans whose triggering event matches the given pending event.
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Figure 1.1: The Reason Cycle of An AgentSpeak Agent

These plans are often called relevant plans. Recall that the context condition of a plan tells us

whether a plan can be applied at a particular moment in time, given the information the agent

currently has. Therefore, the agent next needs to select an applicable plan from previously all

retrieved relevant plans. In order to do so, the agent simply needs to check whether the context

condition of each relevant plan is believed to be true according to the current base belief. Once

an applicable plan exists and is selected, the plan-body of such a plan becomes an intention

adopted by the agent. Intention adoption can amount to (i) adding the instantiated plan-body to

the current set of intentions when the triggering event is external, (ii) replacing the associated

existing intention with the newly refined intention when the event is internal. Finally, given a

set of current intentions, the agent selects an intention each time and execute one step of such an

intention. This reasoning cycle will carry on until there is no pending event to respond to and all

intentions are completed.

While the AgentSpeak language is a useful formal language for BDI agents, it is limited to a

procedural interpretation for goals. To illustrate, the goals in AgentSpeak are treated as events

which trigger plans. The pursuit of a goal is equivalent to the execution of a set of procedures

written in a related plan-body. Despite the practicality of the procedural aspect of goals in

dynamic environments, the absence of declarative aspect of goals (i.e. a description of the state

sought) renders the ability to reason about goals impossible. For instance, without declarative

information of what a goal an agent is trying to achieve, the agent has no mechanism to check, e.g.

whether it has been indeed achieved after the successful execution of procedures. To decouple the

plan failure (resp. failure) from goal failure (resp. failure), CAN language [WPHT02] is proposed
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to introduce a representation of goals which allows for both declarative and procedural aspects

to be specified and used. To do so, CAN language includes a new declarative goal construct,

namely goal(ϕs,P,ϕ f ) where ϕs and ϕ f are grounded atoms built from normal connectives, e.g.

the logical conjunction ∧, whereas P stands for the plan-body. Such a declarative goal construct

succinctly states that the success condition ϕs should be achieved using (procedural) plan-body

program P, failing if the failure condition ϕ f becomes true. The operational semantics provided

by CAN language, which is simplified in [SSP06] later on, nicely captures the sensible behaviours

of dropping goals when they are either achieved (i.e. ϕs holds), or become unachievable (i.e. ϕ f

holds). Although persistence is dependent on the commitment strategy of a given agent (e.g. the

blind commitment in [RG91]), the declarative goal construct in CAN does not omit the persistence

in BDI theory of practical reasoning [Bra87]. As a matter of fact, to ensure the certain amount

of persistence in CAN, if the plan-body program P within goal(ϕs,P,ϕ f ) has been completely

executed, but the success condition ϕs still does not hold true, then P will be re-executed.

In addition to the unification of declarative and procedural goals, CAN language also proposes

another distinguishing feature, namely the automatic failure handling mechanism. To cope with

failure, a built-in backtracking failure handling mechanism exists to try other available plans to

address a goal if one plan currently selected to achieve the same goal has failed. To illustrate,

let two plans be P1 and P2 to achieve a goal G and the plan P1 is currently selected to pursue

goal G. To anticipate the potential occurrence of the goal recovery, the CAN agent keeps plan P2

as a back-up plan while executing plan P1. Whenever plan P1 has failed before its completion,

the agent can initiate the execution of the back-up plan P2 to continue accomplishing goal G. In

the case of no alternative back-up plan available, the goal will then be deemed failed, and the

failure is propagated to higher-level goals. Finally, CAN language also provides semantics for

the concurrency of the agent programs to enable interleaving steps from different intentions. For

instance, an intention to go out for dinner can be interleaved with an intention to buy milk, e.g.

by buying bread on the way back from dinner rather than buy milk after reaching home from

dinner. To sum up, the language of CAN is the superset of AgentSpeak language. From now on,

we stick to the CAN language, whose syntax and formal semantics are provided in a fine detail

in Section 2.3.

While CAN language is an excellent framework to model intelligent CAN agents, the resulting

agent still can fail to accomplish intentions in a realistic environment pervaded by uncertainty. In

particular, CAN agents often rely on a pre-defined plan library to reduce the planning problem to

the much simpler problem of plan selection. Although such a pre-defined plan library allows for a

fast agent reasoning cycle, it also causes an insurmountable problem to CAN agent programmers

to obtain a plan library which can cope with every possible eventuality. Unfortunately, a plan

library which covers every possible eventuality is not always available, particularly when dealing

with uncertainty. Furthermore, the agent can still suffer from the failure of execution of agent

programs, even if the plan library is adequate. For example, let it be a CAN agent which is
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executing a plan containing an action to open a door. Despite fully executing the action of door-

opening, the agent can still fail to open the door (e.g. the door is jammed). This kind of undesirable

situation particularly holds true in an environment pervaded by uncertainty, e.g. actions have

stochastic effects. To cope with the potential execution failure of the agent programs, however,

planning (which is reviewed in Section 1.3) can automatically create a new plan from actions to

achieve a goal for which either no pre-defined plan exists or worked.

Indeed, planning can augment the range of the behaviours (i.e. the plans) of the CAN agent by

generating new plans to adapt to the changes in an environment (which we discuss in Chapter 4).

However, it will be even more beneficial for a CAN agent if it can also remember the new plans

generated by, e.g. the external planning tools. Intuitively, it is similar to how human beings

learn. We will refer to the step of adopting new plans as plan library expansion. However, merely

adding plans is not enough for an agent. As the agent ages, some plans may become unsuitable,

hampering its reactive nature which is crucial to the success of CAN agents. For instance, an

approach to an event (e.g. the need to enter another room) which worked in the past (e.g. turning

a handle) may no longer work in the future (e.g. the handle has been removed, and a button needs

to be pressed instead). Therefore, there is a need for plan contraction as well, which we refer

as plan library contraction. However, plan library contraction is an altogether more significant

– albeit challenging – problem than the plan library expansion. Unlike plan library expansion,

plan library contraction relies on both qualitative and quantitative measures associated with

each plan in the library to determine which plans are no longer deemed valuable and so can be

removed. For example, a plan may be flagged for deletion because it became obsolete (e.g. a low

number of calls) or because it became incorrect (e.g. a high failure rate). Due to the inherently

structural nature of a plan library, however, care must also be taken when deleting plans to

avoid undesirable side-effects. To illustrate, given a plan with a mild failure rate, the deletion of

such a plan should not be recommended if, e.g. the agent has no alternative to replace it at the

time. Therefore, plan library contraction process must be conducted with the consideration of

qualitative and quantitative measures, and structural properties associated with each plan.

Finally, the intelligent agent is typically expected to respond to new events while always

dealing with other events. Indeed, CAN agents support concurrent execution of goals in an

interleaved manner. Therefore, it is naturally expected that the CAN agent should be sensible in

the way it pursues multiple goals. In fact, there are often some complex interactions within the

CAN agent which could cause itself to fail in achieving its intentions. For example, a previously

achieved effect for an action in one intention may be undone by a step in another intention before

such an action that relies on it begins executing, thus preventing this action from being able

to execute (i.e. deadlock). Therefore, it is critical for the agent to avoid harmful interference

between intentions as well. However, to avoid execution inefficiency, the agent also should

capitalise on positive interactions between intentions. Opportunities for positive interactions

between intentions enable the agent to reduce the effort (e.g. resources) it exerts to accomplish
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its intentions. In particular, positive interactions exist when intentions overlap with each other.

In this case, the agent with the overlapping intentions can merge its intentions (effectively

allowing one to skip some of its plan steps in its plan) to reduce the overall execution cost. While,

unlike negative interference, exploiting commonality of intention is necessary for the agent to

perform its tasks correctly, it can be of vital importance in a resource-critical domain such as

in the autonomous manufacturing section [SWH06]. Before we can address the aforementioned

limitations of CAN agents, we first look at what planning is, and how it links with, yet is different

from CAN agents.

1.3 Planning

In the previous sections, we introduce the BDI paradigm and a particular line of classical BDI

languages, e.g. CAN, to representing intelligent agents. Recall that CAN agents are usually

equipped by a library of plans for achieving different goals. Such a library of plans is usually

pre-programmed in a suitable high-level language with procedural knowledge so that the agent

can choose its own suitable way of achieving the given goal depending on the current situation.

For this reason, the problem in CAN agents is effectively solved by the programmer in her (or

his) head, and the solution is expressed afterwards, e.g. as a collection of rules. To some extent, it

is indeed useful and important that the system possesses a wealth of pre-compiled procedural

knowledge about how to function [GL86], e.g. ensuring that the goals can be achieved efficiently

in a dynamic environment. However, such an approach unavoidably puts all the burden on the

programmers who may not be able to anticipate all possible contingencies. Therefore, CAN agents

could result in systems that tend to be brittle, in particular, in a hostile environment. In contrast

to the CAN agent approach, planning is an approach in which a plan instructing which actions

to execute is derived automatically from a model consisting of, e.g. the specifications of actions

and goals. Instead of hand-crafting specific procedural knowledge in CAN agents, planning is

interested in formalising a representation of problem (i.e. model) and finding a general way to

solve this model (e.g. achieving the given goal) which can normally be scaled up to large and

meaningful instances. In general, the solution of a planning model results in the selection of a

sequence of actions which can start from the initial state and should end with the goal state.

Therefore, planning is often defined as the branch of Artificial Intelligence (AI) concerned with

the “synthesis of plans of actions to achieve goals”.

To build a planning system, it usually requires three parts: (i) the model that express, e.g. the

dynamics and goals of the system; (ii) the languages that express the model in a compact and

computable form; and (iii) the algorithms that use the representation of the model for selecting

the action to do next. Overall, these three parts interact with one another. On the one hand,

the complex dynamics and goals in a planning system naturally require expressive models and

languages. On the other hand, the expressive models and languages, in turn, require efficient
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and tractable planning algorithms to select the actions. To aggregate the computational issue

in planning, planning is typically required to satisfy the principles of scalability and generality.

Intuitively, the scalability requires the planning tools to accept the same problem in any size,

whereas the generality demands the planning tools to allow a description of any problem in terms

of the same mathematical model. Fortunately, the past several decades have witnessed significant

and promising advances in all three components of planning in the planning community (seen in

the book written by Hector Geffner and Blai Bonet [GB13]). We now present a succinct review of

the mechanisms of these components in a planning system for the purpose of utilising planning

in BDI agents in Chapter 5 and Chapter 6.

The basic model of planning is the so-called First-principles Planning (FPP) (also called

classical planning) model in which the environment is fully observable, actions are deterministic,

and the initial state is fully known. The task of FPP is to drive a system from a given initial

state into a goal state by applying actions whose effects are deterministic and known. To solve an

FPP problem, the key is to solve a search problem. In fact, an FPP problem can be formulated

as a path-finding problem over a directed graph (the fundamentals of the graph is discussed

in Section 2.5) whose nodes represent the states of the environment, and whose edges capture

the state transitions that the actions make possible. As such, the problem of an FPP problem

is equivalent to the path-finding problem in a directed graph. In principle, there are two main

categories of path-finding algorithms, namely forward search and backward search. As the name

of forward search intuitively conveys, this style of search starts from the initial state and keeps

enumerating all applicable actions forward until the goal is reached. The style of backward

search, contrarily, starts at the goal and applies the actions backward until it finds a sequence

of actions that lands in the initial state. Despite the intuitions in these two searches, none of

them scales up well as they are all uninformed, thus blind when searching a large state space. To

make the search informed about the direction to a goal, it is common to use heuristic functions.

In general, a heuristic function is derived from the specification of the planning instance and

used for guiding the search through the state space. For example, the classical FF planning

system [HN01] uses information about the “helpful actions" to select a set of promising successors

to a state to prune the search space. To some extent, a key accomplishment in the modern

planning research community is to derive useful heuristics in an automatic fashion from the

representation of the problem itself [BLG97].

While the FPP model captures some nice features of the environment, there are many

planning problems which may exhibit features that do not naturally fit into the classical planning.

To name one, the initial situations are often not fully known, e.g. uncertain information about

the initial situation. Instead of proposing correspondingly adapted models with extra modelling

complexity, however, it has been proven successful in tackling these more complicated scenarios by

applying some suitable transformations to the existing FPP problems. This arguably explains why

classical planning remains an active research area in the planning community. For example, in the
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cases where the system is deterministic and all uncertainty only lies in the initial situation such as

in [PG09], a translation can be performed by considering all possible initial situations to remove

the uncertainty, thus obtaining a classical planning. Furthermore, there are other two important

planning models which need attention, namely Markov Decision Processes (MDPs) [GR13] and

Partially Observable Markov Decision Processes (POMDPs) [Mon82] (which are discussed in

more detail in Section 2.4.3). Whereas MDPs generalise the model of FPP by allowing actions

with stochastic effects and fully observable state, POMDPs further extends MDPs by allowing

states to be partially observable through sensors that map the true state of the environment

into observable tokens. After years of development by planning researchers, there is a variety of

MDPs and POMDPs models with many highly efficient algorithms [GNT04].

Finally, regarding the planning language, the planning research community has also settled

on standardised representations. The first and probably simplest language in use is Stanford

Research Institute Problem Solver (STRIPS) [NF71]. In STRIPS, each state of the world is

represented by a set of grounded atoms and a goal formula is built from the ground atoms using

the normal connectives. For example, we can have that in(london) (resp. have(report)) is

a grounded atom encoding the information of being in London (resp. having report), whereas

in(london)∧have(report) is a goal formula ensuring both being in London and having report.

It is noted that the predicate in and have are explicitly declared by model programmers to take

one variable. Meanwhile, each action is defined by an action description consisting of two main

parts: a description of the effects of the action, and the conditions under which the action is

applicable. For example, the following is the action description of flying from London to Shanghai.

fly(london, shanghai)

pre-conditions: at(london), post-effects: at(shanghai).

where the predicate fly and at are similarly declared by model programmers to take two

variables and one variable, respectively. In practice, in order to easily compute the effects of

action application in the environment, these effects are simply described by two lists, namely the

delete list and add list. Whereas the delete list specifies those predicates that are no longer true,

thus being deleted, the add list contains those predicates that are added and are regarded as

being true. Therefore, the same action description of flying a plane from London to Shanghai can

be revised and shown as follows.

fly(london, shanghai)

pre-conditions: at(london), delete list: {at(london)}, add list: {at(shanghai)}.

However, due to the limited expressiveness of STRIPS language, Action Description Language

(ADL) [Ped89] is proposed to support some other important features such as the condition effects.

Later on, to provide a common formalism for describing planning problems in International

Planning Competition (IPC), Planning Domain Definition Language (PDDL) [MGH+98] is pro-

posed as an official language in the planning competitions. In a nutshell, PDDL accommodates

the STRIPS and ADL languages along with a number of additional syntactic constructs, e.g.
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requirements feature which supports the articulation of the different level of expressiveness.

In PDDL languages, the planning problems are expressed in two parts: one about the general

domain; the other about a particular domain instance. Such a division has facilitated the empiri-

cal evaluation of a planner performance and the development of standard sets of problems in

comparable notations. Finally, we note that the details of basic STRIPS formalism and PDDL

representation are provided in Section 2.4.2 and Section 2.4.3 in more details.

1.4 Thesis Outline

The CAN language provides a powerful and flexible framework which is capable of modelling

intelligent agents in complex and dynamic environments. However, the lack of abilities in the

resulting CAN agents to create new plans, to adapt to the environment, and to manage intention

interleaving limits its practical capability in an environment pervaded by uncertainty.

The aim of this thesis is to develop the planning extension of CAN agents to utilise planning

for robust agent program execution, adaptive plan library, and efficient intention progression.

To start with, we are interested in ways of extending the CAN agents such that planning

ability can be employed to recover the execution failure when it needs most in Chapter 4. To

this end, we propose a novel operational semantics for incorporating planning as an intrinsic

planning capability that increases the robustness of a CAN agent by exploiting the full potential

of declarative goals. In achieving this, we introduce a declarative goal intention to keep track

of declarative goals used by planning and develop a detailed specification of the appropriate

operational behaviour when planning is pursued, succeeded or failed, suspended, or resumed in

CAN agents. Also, we prove that CAN agents and planning are indeed theoretically compatible

for such a principled integration in both offline and online planning manner. Furthermore, we

demonstrate the practical feasibility of this integration by a case study of a smart home.

In this thesis, we also want to propose an extension of CAN agents that allow the resulting

agent to learn to adapt to a changing environment. Specifically, we present a plan library evolution

architecture with mechanisms to incorporate new plans (plan expansion), e.g. from the automated

planning tool, and drop old/unsuitable plans (plan contraction) in Chapter 5 to adapt to changes

in a realistic environment. To achieve this objective, we follow a principled approach to a plan

library expansion and contraction, motivated by postulates that clearly highlight the underlying

assumptions, and supported by measures which are able to characterise plans in the library. The

systematic specification of domain-independent characteristics (e.g. the quality of plans) of the

plan library forms the basis for the plan library expansion and contraction reasoning. As such,

we can define a plan library expansion operator and formally shows the benefits of expansion

regarding the relevant characteristics. Meanwhile, a plan library contraction operator is also

introduced. Unlike the plan library expansion operator, the contraction operator needs to not only

take the earlier characteristics into account, but also balance the need for reactivity, the fragility
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of the plan library, and the correctness and overall performance of the agent. To demonstrate the

theoretical feasibility of our contraction operator, a concrete multi-criteria decision making is

employed to instantiate such an abstract contraction operator.

While the principle integration of planning in CAN agents added an extra layer of robustness

when no pre-defined plan worked or existed, there still would be execution failures due to the

negative interaction between multiple intentions. Indeed, an agent pursuing multiple goals can

encounter the so-called deadlock due to the careless interleaving. Equally, positive interactions

can occur between intentions (e.g. common sub-intentions). In Chapter 6 we present another

usage of planning in CAN agents to managing the concurrent intention executions. Specifically,

the planning is used to exploiting overlapping intentions while resolving conflicts during the

interleaved execution of intentions. As such, we show that CAN can think ahead about how to

pursue its intentions in the possibly best and most sensible manner. Finally, we also implement

our approach and evaluate such an approach empirically in a realistic manufacturing scenario to

demonstrate its practical feasibility.

1.5 Overview

Finally, we organise the thesis as follows:

• In Chapter 2 we introduce notations and preliminaries, including an introduction to logic

programming, CAN language, and FPP formalism.

• In Chapter 3 we provide a review of the literature on the current state-of-the-art CAN

agents, e.g. the utilisation of FPP in CAN agents.

• In Chapter 4 we propose a framework with a strong theoretical underpinning for integrating

planning within CAN agents based on their intrinsic relationship.

• In Chapter 5 we describe measures that characterise the performance and structure of

plans, and provide rationales to guide the process of plan expansion and plan contraction.

• In Chapter 6 we propose a theoretical framework where planning is employed to manage

the intention interleaving in an automated fashion to both guarantee the achievability of

intentions and discover and exploit potential overlapping intentions.

• In Chapter 7 we conclude and discuss future work.

12



C
H

A
P

T
E

R

2
PRELIMINARIES

In this chapter we start with some general mathematical notations along with preliminaries on

the logic programming which will be used as a formal knowledge representation for Conceptual

Agent Notation (CAN) agents. We then introduce some formal concepts and notations of Concep-

tual Agent Notation (CAN) agents, First-principles Planning (FPP), and some fundamentals of

graph theory as a useful structural representation.

2.1 General Notation

We first introduce some mathematical set notations. A set is an unordered collection of distinct

objects. The set theory begins with a fundamental binary relation between an object u and a

set U. If u is a member of U, the notation u ∈ U is used for membership. Since sets are also

objects, the membership relation can relate sets as well. Let ⊆ (resp. ⊂) denote set inclusion

(resp. strict set inclusion) for the membership among sets. There are also a number of operations

on sets. Given two sets U1 and U2, then U1 ∪U2 = {u | u ∈U1 or u ∈U2} denotes the union of U1

and U2 whereas U1 ∩U2 = {u | u ∈U1 and u ∈U2} stands for the intersection of these two sets.

The set difference of two sets, denoted as U1 \U2, is the set of all members of U1 that are not

members of U2, i.e. U1 \U2 = {u | u ∈U1 and u ∉U2}. For any non-empty set U1 and U2 such that

U1 ∩U2 6= ;, we can easily have the following membership relations related to the operations: (i)

U1 ⊆ (U1 ∪U2), (ii) (U1 ∩U2)⊆U1, and (iii) (U1 \U2)⊆U1. The power of a set U , denoted as 2U , is

the set whose members are all of the possible subsets of U . For example, the power set of {1,2} is

{;, {1}, {2}, {1,2}}. Finally, let |U | denote the cardinality of a set of U , i.e. the number of members

in U . In addition, a total order over a set U is a binary relation, denoted ¹, if the following hold

for all u1,u2 and u3 in U : (i) u1 ¹ u2 and u2 º u1 then u1 ∼= u2 (antisymmetry); (ii) if u1 ¹ u1 and

u2 ¹ u3 then u1 ¹ u3 (transitivity); and (iii) u1 ¹ u2 or u2 ¹ u1 (connexity). Therefore, u1 ≺ u2,

13
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which is also called the strict order, if and only if u2 ¹ u1 does not hold. We also use standard

mathematical symbols N to refer to the set of natural numbers, R the set of real numbers, and

R≥0 the set of non-negative real numbers, For legibility, we use u as a compact notation for a

vector (u1, . . . ,un).

2.2 Logic Programming

In this section we present the syntax and semantics of logic programming. The syntax of logic

programming is based on three types of symbols: constant, variable, and predicate symbols.

Following the convention in logic programming, variables start with uppercase letters and all

others start with lowercase letters. If V is a variable and c is a constant, then we say V and c

are terms. If p is a predicate and t1, . . . , tn are terms, then p(t1, . . . , tn) is an atom. A special atom

= (t1, t2) is an equation in which the predicate p is =, which is often written simply as t1 = t2. If

p is an atom, then p (resp. not p) is a positive (reps. negative) literal. The negation symbol not
in the negative literal not p is referred to as “negation as failure", that is, a negative condition

not p is shown to hold by showing that the positive condition p fails to hold. Therefore, the close

world assumption is used in this thesis unless it is specified otherwise. To avoid any confusion,

the negations cannot be applied to any terms (e.g. constants and variables) directly. Let h be

an atom and b1, . . . ,bn literals which are defined as an atom or its negation. A (normal) clause

(or rule) is of the form h ← b1 ∧ . . .∧ bn with h called the head and b1 ∧ . . .∧ bn called the body.

The clause h ← b1 ∧ . . .∧bn is read as if bi ∧ . . .∧bn, then h. Informally, if every bi is true, then

h must hold true. If each bi is a positive literal, then a clause is also called a definite clause.

A clause h ← true is called a fact, and is written simply as h. A logic program is a finite set of

clauses. Finally, in logic programming, a term, atom, clause, or a logic program is also called an

expression.

Example 1. Consider a logic program which contains the following (definite) clauses and facts:

fly(X) ← bird(X) ∧ not flightless(X)

bird(pigeon)

bird(penguin)

flightless(penguin)

where fly,bird,flightless are predicates, X a variable, and pigeon,penguin constants. Intu-

itively, the clause above states that if an X is a bird and it is not flightless, then X should be able to

fly. Given the goal of finding something that can fly, i.e. fly(X), there are two candidate solutions,

which solve the first subgoal bird(X), namely X=pigeon and X=penguin. The second subgoal not

flightless(penguin) of the second candidate solution X=penguin fails, because its positive

condition flightless(penguin) holds. However, the second subgoal not flightless(pigeon)

of the first candidate solution X=pigeon succeeds, because flightless(pigeon) does not hold,
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i.e. “negation as failure”. Therefore, X=pigeon is the only solution of the goal. In other words, it

can be concluded from this logic program that the atom fly(pigeon) holds true.

The form of reasoning we have intuitively applied in the above example is called substitution,

or variable binding, e.g. X=penguin. A substitution θ is a finite set of form {V1/t1, . . . ,Vn/tn} where

each V1, . . . ,Vn are distinct variables, and t1, . . . , tn are terms such that Vi 6= ti for i ∈ {1, . . . ,n}. We

also call θ a ground substitution if t1, . . . , tn are all constants, i.e. it is variable-free. Given an

expression φ and a substitution θ = {V1/t1, . . . ,Vn/tn}, the expression φθ stands for substituting

each occurrence of Vi in φ with ti for i ∈ {1, . . . ,n}. A substitution θ is also called a unifier of two

terms t1 and t2 if t1θ = t2θ. It is possible that no unifier for given two terms exists. For example,

X and p(X ) cannot be unified. Often there are more than two unifiers existing for two terms.

When more than two unifiers exist, we are interested in a particular type of unifier, namely

most general unifier (mgu). Intuitively, a substitution θ is deemed a mgu of two terms t1 and

t2 if θ itself is a unifier of these two terms and no more specific than any other unifier θ′ of t1

and t2. By being no more specific than θ′, it means that it is always feasible to substitute for

some of the variables of θ and get θ′. Formally, a substitution θ is called a mgu of two terms t1

and t2 if θ is unifier of t1 and t2, and for any unifier θ′ of t1 and t2, there always exists another

unifier λ such that tiθ
′ = (tiθ)λ where i = 1,2. For example, let two terms be t1 = p(X , Z) and

t2 = p(Y , Z). We can have θ = {X /Y } as one mgu of t1 and t2. Given another unifier θ′ = {X /Y , Z/a},

we have tiθ
′ = (tiθ)λ where λ= {Z/a} and i = 1,2. We note here that there can be more than one

most general unifier. However, such substitutions are the same except for variable renaming.

For instance, both {X /Y } and {Y /X } are a mgu to t1 = p(X ,a) and t2 = p(Y ,a) with only variable

name being different. Further to this, we assume the existing algorithm for finding the most

general unifier of a set of expressions (e.g. in [BS01]) but will not discuss in any further detail

in this thesis. The interested readers are referred to the work of [Rob92, Kow83] for a complete

count of logic programming foundations.

To define the semantics of logic programming, a Herbrand model is used to discuss the

truth or falsity of a logic program which is a finite set of clauses. The Herbrand base of a

logic program is the set of ground atoms with regard to the set of all possible ground terms,

i.e. containing no variables. This set of all possible ground atoms is also called the Herbrand

universe. A Herbrand interpretation is a mapping from the Herbrand base to the set of truth

values {>,⊥} . For convenience, we will also refer a Herbrand interpretation ω by the set of atoms

{p ∈ H |ω(p) =>}, i.e. we simply list only those atoms that are true, where H is the Herbrand

base. A Herbrand interpretation is a Herbrand model of a definite clause h ← b1 ∧ . . .∧bn if for

every substitution θ such that biθ is a (set-theoretic) member of interpretation, hθ is also a

member of the interpretation. In other words, when the body is true, it requires the head - or

conclusion - to be true as well. A Herbrand interpretation is a Herbrand model of a definite clause

logic program if it is a Herbrand model of every clause in the logic program. Definite clauses

are guaranteed to have a unique minimal (by set inclusion) Herbrand model, called the least
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Herbrand model. A definite clause program is said to entail an atom p iff p is a member of the

least Herbrand model of this definite clause program. Thus, the least Herbrand model defines the

semantics of definite clauses. Throughout this thesis we always assume that we are working with

definite clauses, hence this least Herbrand model always exists. Further to this, we assume the

standard semantics of logic programming for definite clauses but will not discuss these in detail.

2.3 CAN

We introduce the CAN [WPHT02, SP11] to formalise the behaviours of a classical Belief-Desire-

Intention (BDI) agents. In a nutshell, CAN language, being a superset of AgentSpeak [Rao96],

provides the first and foremost operational semantics of AgentSpeak to capture the behaviours of

AgentSpeak formally.

2.3.1 Syntax

A CAN agent can be specified by a 3-ary tuple 〈B,Π,Λ〉 where B represents its initial belief

base, Π its plan library, and Λ its action description library. The syntax of a CAN agent can be

constructed by three types of predicates, namely event predicate e, belief predicate b, and action

predicate act. Similar to the logic programming, terms (resp. vector terms) in CAN are denoted

as t (resp. t). Therefore, we can write e(t), b(t), and act(t) to denote the atoms for events, beliefs,

and acts, respectively.

The belief base B of an agent is a set of ground belief atoms, which is also known as facts

(e.g. bird(penguin)), which encodes what the agent believes about the world. Formally, if b is a

belief predicate, and t= {t1, . . . , tn} are terms, then b(t) is a belief atom. If b(t) and c(s) are belief

atoms, then b(t), not b(t), and b(t)∧ c(s) are beliefs. A belief atom or its negation is also referred

to as a belief literal where the negation is referred to as “negation as failure” same as in the logic

programming. A ground belief atom is usually called a base belief which is a member of the belief

base of the agent. In addition, given a belief formulas φ constructed from basic belief with the

conventional logical connectives, we assume here that the entailment operators are available for

checking whether the belief formulas φ is a logical consequence over the belief base of an agent

(i.e. B |=φ). Also, operators (e.g. AGM belief revision [AGM85]) are assumed available to add a

belief base b to a belief base B (i.e. B∪ {b}) and delete b from B (i.e. B \{b}).

The plan library Π encodes the operational information of the domains for the agent to

execute. It is a collection of plan rules of the form e(t1) :ϕ(t2) ← P(t3) with e(t1) the triggering

event, ϕ(t2) the context condition, P(t3) the plan-body, and ti a vector of terms (i = 1,2,3). For

convenience, the expression to the left of the arrow is also called the head of the plan, which

distinguishes itself from the plan-body part. In detail, the triggering event in the head of a plan

specifies why the plan is triggered. Intuitively, when an agent is required to handle a new event

goal or notices a change in its environment, it may trigger additions or deletions to its events or
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beliefs. Let b(t) be a belief atom and e(s) be an event goal. Formally, a triggering event can be

(i) a belief addition +b(t) (i.e. addition of b(t) to the belief base); (ii) a belief deletion −b(t) (i.e.

deletion of b(t) from the belief base); (iii) an event goal !e(s) (i.e. an event goal posted to the agent

to respond to); or (iv) a test goal +?b(t) (i.e. test b(t) to be true or not). These forms of triggering

events will be the part of basic building blocks for the plan-body (which is discussed later on).

The plan-body is also referred to as the agent program in CAN language as it lists the

instructions to execute for the agent. The basic building blocks used in the plan-body P is defined

by the following syntaxes: P ::= act | ?ϕ | +b | −b | !e. We now intuitively explain the meaning of

each of these syntactic components, before giving their formal semantics in CAN in Section 2.3.2.1.

The syntax act stands for a primitive action which represents the things the agent is capable of

doing. The syntax ?φ, as a test goal, tests whether or not the belief φ can be entailed from the

belief base B. Unlike the context condition of a plan which can only check the information before

the execution of a plan, the text ?φ allows getting the latest information which might only be,

e.g. available during the execution. The syntax +b and −b are respectively belief addition and

belief deletion. The effect of +b is that it adds the base belief b to the belief base B (i.e. B∪ {b})

if it is not already there. Conversely, −b removes the base belief b from the belief base B (i.e.

B\ {b}) if it is there. These two syntaxes +b and −b enable the agent to update its belief base

proactively. The syntax !e, as an event goal, denotes a pending event to which an agent needs

to respond. In order to distinguish an event goal !e from a triggering event e, the “!” symbol is

prefixed before an event atom. By allowing a new event in plan-body, it supports the so-called

complex behaviour which requires more than simple sequences of actions to execute. In fact, an

agent needs to address events, e.g. achieving an event goal, before further actions can be taken.

Next we present the various order relations available in CAN language when assembling the

building blocks of plan-body introduced above. In CAN, the symbol ; is usually used for denoting

sequencing relation between two agent programs. For example, we can have the syntax P1;P2

which specifies the order of execution of P1 and P2, i.e. P1 followed by P2. Also, the syntax P1;P2

also implies that the agent cannot start the execution of P2 unless P1 is achieved in full. However,

it is often the case that one program P2 cannot wait until another program P1 is fully achieved

in full. In other words, the agent need to pursue two program P1 and P3 concurrently. In CAN,

it also supports concurrent execution of agent programs. Formally, the syntax P1 ∥P2 is used to

stand for concurrent execution of P1 and P2. However, the concurrency execution in CAN does

not exactly requires the agent to, e.g. execute two actions simultaneously. Rather, it allows the

agent to pursue the multiple programs in an interleaved fashion, e.g. one step in one program

and next step in another program. Therefore, P1 ∥P2 is often called interleaved concurrency of

the agent program P1 and P2.

So far, it can be seen that the agent programs introduced solely tell the agent what to do

through a set of procedures P, e.g. performing an action drink(water). However, it is often

the case that the agent may only care about a declarative description of state sought, e.g. not
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being(thirsty). While the procedural aspects of programs can be achieved efficiently in a

dynamic environment, by omitting the declarative aspects of programs, the agent loses its ability

to reason about its programs. For instance, without knowing what a state of affairs that an

agent is trying to achieve, one cannot check whether the state is achieved, or check whether

such a state is even impossible to reach. To address the lack of declarative aspect support in

agent programs, CAN language also provides a goal program goal(ϕs,P,ϕ f ) which states that

the successful condition ϕs should be achieved through the procedural program P, failing when

the failure condition ϕ f becomes true and retrying (alternatives) as long as neither ϕs nor ϕ f is

true. In detail, the goal program goal(ϕs,P,ϕ f ) first provides explicit procedure P which specifies

how the agent might bring about the desired success condition ϕs. Furthermore, it also encodes

when it is deemed impossible to accomplish, i.e. the failure condition ϕ f . The importance of the

success condition ϕs and the failure condition ϕ f is that they decouple the success and failure

of the desired state from the success or failure of its related plan. As a result, the goal program

goal(ϕs,P,ϕ f ) will not be dropped merely bcause a plan to achieve a state has failed. Similarly,

a state cannot be assumed achieved just because the plan which is written to achieve it has

executed fully.

A number of auxiliary agent programs are also used internally in the full program language,

namely nil | e : (|ϕ1 : P1, · · · ,ϕn : Pn|) | P1.P2 | goal(ϕs,P,ϕ f ). The first auxiliary program nil

denotes a terminating program, i.e. nothing left to execute. Recall that the triggering event in

its head triggers a plan in CAN language. Therefore, given an event e, the agent can retrieve

a set of plans, e.g. e ← ϕi : Pi (i ∈ {1, . . . ,n}), whose triggering event matches the given event e.

Normally, this set of plans is called the relevant plans for the event e, which encodes all possible

choices of plans to respond to an event e. To compactly denote this information, the program

e : (|ϕ1 : P1, · · · ,ϕn : Pn|) is introduced. It means that given an event e, a plan-body Pi can be

executed if its related context condition ϕi holds where i ∈ {1, . . . ,n}. Regarding the auxiliary agent

program P1.P2, it provides the failure recovery by executing P2 only on failure of P1. The failure

handling mechanism �, which is a distinguishing feature of CAN agents, specifies the kind of

behaviours when the current plan does not go well as expected. Intuitively, it enables trying

alternative plans for addressing an event if the current strategy failed. To implement this type of

failure handling, it is typically accomplished by combining program e : (|ϕ1 : P1, · · · ,ϕn : Pn|) and

P1.P2. For example, the program (ϕ1 : P1)�e : (|ϕ2 : P2, · · · ,ϕn : Pn|) says that the current strategy

ϕ1 : P1 is selected to address the event e while maintaining the rest of possible alternative plans

(i.e. ϕ2 : P2, · · · ,ϕn : Pn) to consider if P1 failed.

Finally, the action library Λ is a collection of actions a in the form of a(x) :ψ(x)←φ−(x);φ+(x).

We have that ψ(x) is called the precondition, and φ−(x) and φ+(x) denoting a delete and add set

of belief atoms, respectively. We note that we adopt STRIPS-like action formalism (discussed in

details in Section 2.4.2) for simplicity. However, there is nothing preventing these actions from

being much richer, such as powering the wheels on a rover.

18



2.3. CAN

2.3.2 Semantics

The semantics of the CAN agent state what are the legal execution of an agent. The operational

semantics for a CAN agent are defined in terms of configurations C and transitions C → C′.
Intuitively, the configuration C is the current state which the agent is in, and it encapsulates,

among others, its belief base and the current state of partially executed plans. A transition

moves our agent from one configuration into another one. A transition C → C′ denotes that

executing a single step in configuration C yields C′. We write C → (resp. C 9) to state that

there is (resp. is not) a C′ such that C → C′. Also, we denote ∗→ as the transitive closure of

→. Intuitively, the transitive closure of ∗→ describes the reachability from one configuration to

another configuration based on the given defined transition →. To move one configuration to

another, there are derivation rules specifying in which cases an agent can transition to a new

configuration. A derivation rule consists of a (possibly empty) set of premises pi and a single

transition conclusion c, denoted by

p1 p2 · · · pn

c
l

where l is a label for reference. Intuitively, it says that if pi (e.g. a context condition of a plan)

holds for ∀i ∈ {1, . . . ,n}, then a conclusion c (e.g. a plan can be selected) can be obtained. To

simplify the explanation of the semantics of CAN, the semantics of CAN agent is usually specified

by two different levels of transition forming two layers. The first type of transition is defined

regarding the intention-level configuration specifying how to evolve a single intention. Such an

execution at the intention-level will only affect the internal state of the agent, i.e. its belief base

and the current intention. The second type of transition is defined as the agent-level configuration

characterising how to execute a complete agent. Typically, the agent-level configuration captures

the evolution of the intentions of an agent, e.g. adopting or dropping intentions. We now discuss

each group separately for legibility and present the related derivation rules in the next section.

2.3.2.1 Intention-level Execution

We present the derivation rules characterising the transition of the intention-level configuration

in the form of 〈B,A,P〉 in which B denotes the belief base, A the sequence of actions that have

been executed by an agent, and P the program that is being executed (i.e. the current intention).

We first start with a simple derivation rule which characterises the belief addition in CAN

agents. Recall that +b as an agent program instructs the agent to adds the base belief b to the

belief base B (i.e. B∪{b}) if it is not already there. Therefore, we can have the following derivation

rule to formalise this instruction in an intention-level configuration where +b is the current

intention:

〈B,A,+b〉→ 〈B∪ {b},A,nil〉 +b
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It can be noted that after the program of belief addition is executed, it becomes nil which

indicates that the program terminates here now. Since adding a base belief is done by the

set union operation, the belief base remains unchanged if such a base belief is already there.

Therefore, there is no premise required in the derivation rule. Similarly, we can have the rule for

belief deletion with set difference operation being performed in the belief base as follows:

〈B,A,−b〉→ 〈B\{b},A,nil〉 -b

We are now ready to look at a derivation rule which requires one premise to hold before

reaching a conclusion, namely the test goal ?φ. Recall that the test goal ?φ is used to check

whether a belief condition φ holds according to the current belief base B. If the belief condition φ

holds (i.e. B |=φ), then the test goal succeeds (thus terminating as nil). Therefore, the following

derivation rule can be given to account for the execution of test goal operation:

B |=φ
〈B,A,?φ〉→ 〈B,A,nil〉 ?

Next we present a derivation rule for executing an action. Recall that an action in form of

a : ψ← φ−;φ+ first says that the agent can only execute this given action if the precondition

holds B |=ψ in the current belief base. Secondly, the successful execution of such an action will

delete and add the set of belief atoms φ− and φ+, respectively, from the belief base B resulting

in (B \φ−)∪φ+. Since any action needs to be instantiated (i.e. a ground atom) before it can

be executed, we need to make sure that any variables used in the action must be replaced by

constants, i.e. a substitution θ, Therefore, we have the following rule for the execution of an

action where θ is the suitable substitution, A ·act records the execution of act, and nil denotes

the termination state.

a :ψ←φ−;φ+ ∈Λ aθ = act B |=ψθ
〈B,A,act〉→ 〈(B\φ−θ)∪φ+θ,A ·act,nil〉 act

We now look at the final basic agent program !e, i.e. an event goal. Recall that the agent

program !e denotes a pending event that an agent needs to respond to. To deal with !e (which

can be either internal or external), there is a three-stage process to address the pending event.

The first stage is to collect a (non-empty) set of the plans whose triggering events match the

pending event subject to a mgu (i.e. θ =mgu(e′, e)). Such a set of plans is also called the relevant

plans. The purpose of a mgu unification is to deter the rest of variables in the context condition

and plan-body of the given plan from being instantiated. Deterring the instantiation of the

context condition and plan-body until they have to allows BDI agents to respond flexibly to

the current state of the environment. As standard, we maintain the set of relevant plans ∆ of

the form 〈ϕ : P〉 where ϕ (resp. P) is the context condition (resp. plan-body) of a plan whose

triggering event e′ matches the actual event goal e subject to a mgu θ. Therefore, we can have

∆= {ϕθ : Pθ | (e′ =ϕ← P) ∈Π∧θ =mgu(e′, e). Formally, we can have the following derivation rule
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to define the process of retrieving a set of relevant plans for a given event where the pending

event !e is transitioning to the set of its relevant plans if such a set of relevant plans exists.

∆= {ϕθ : Pθ | (e′ =ϕ← P) ∈Π∧θ =mgu(e′, e)}
〈B,A, !e〉→ 〈B,A, e : (|∆ |)〉 event

The second stage of responding to an event goal !e is to select one applicable strategy Pi

from the set of relevant plans ∆= e : (|ϕ1 : P1, . . . ,ϕn : Pn|). A strategy option Pi is applicable if

the related context condition ϕi is believed true where i ∈ {1, . . . ,n}. In this case, the following

derivation rule select constructs an auxiliary program in the form of Pθ� e : (| ∆\ {ϕ : P} |),
where Pθ denotes the selected plan with bindings θ and |∆\{ϕ : P} | the new set of remaining

plans. We can see that the rule select combines e : (|∆ |) and the construct �. Also the new set

of remaining strategies ensures that only strategy options that are not P will be considered if the

current strategy P failed:

ϕ : P ∈∆ B |=ϕθ
〈B,A, e : (|∆ |)〉→ 〈B,A,Pθ� e : (|∆\{ϕ : P} |)〉 select

The third stage in handling an event goal !e involves coping with the situation when the

current strategy is unable to execute further. Indeed, this situation may happen, particularly in

an environment which is dynamic and uncertain. For example, the precondition of an action act

in a plan-body P1 may not hold right before being executed, thus resulting in the failure of the

current strategy. Formally, when the current non-empty strategy P1 (i.e. P1 6= nil) in an agent

program of the form P1 �P2 has no next legal intention-level transition (i.e. 〈B,A,P1〉9), a new

derivation rule �⊥ is introduced to try some alternative strategy in P2, if applicable for execution

(i.e. B,A,P2〉→ 〈B′,A′,P ′
2〉) to avoid the undesired outcome.

P1 6= nil 〈B,A,P1〉9 〈B,A,P2〉→ 〈B′,A′,P ′
2〉

〈B,A,P1 �P2〉→ 〈B′,A′,P ′
2〉

�⊥

When the agent has selected an applicable strategy and it can transition to the end without

failure, then it must be executed in full to completion. To this end, the following two derivation

rules serve executing the current strategy one step (rule �seq) and to finish its execution in

full (rule �>). In detail, the rule �seq says that if the current strategy P1 can be progressed

(i.e. 〈B,A,P1〉→ 〈B′,A′,P ′
1〉), then it should be continued (i.e. 〈B,A,P1 �P2〉→ 〈B′,A′,P ′

1 �P2〉).
Similarly, if the current strategy is successfully completed to handle an event, then the whole

program including the recovery structure � completes shown in the rule �>. Therefore, it can be

understood that the failure handling mechanism does not intervene and it would only start to

operate when the agent gets stuck with the current strategy (see the rule �⊥).

〈B,A,P1〉→ 〈B′,A′,P ′
1〉

〈B,A,P1 �P2〉→ 〈B′,A′,P ′
1 �P2)〉 �seq 〈B,A, (nil �P2)〉→ 〈B′,A′,nil〉 �>
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We now look at the derivation rules to account for the sequencing order ; between agent

programs. Recall that the program P1;P2 specifies that the execution of P1 is followed by the

execution of P2. To be precise, the sequencing order has two-level operational meanings. Firstly,

it says that the first program P1 should evolve itself steps by steps until completion, provided

it is possible. Secondly, the second program P2 cannot start evolving itself unless P1 is finished.

The following two rules, namely seq and seq> defines these two-level operations, respectively:

〈B,A,P1〉→ 〈B′,A′,P ′
1〉

〈B,A, (P1;P2)〉→ 〈B′,A′, (P ′
1;P2)〉 seq

〈B,A,P〉→ 〈B′,A′,P ′〉
〈B,A, (nil;P)〉→ 〈B′,A′,P ′〉 seq>

The rule seq progresses a sequence by evolving its first part (i.e. 〈B,A, (P1;P2)〉→ 〈B′,A′, (P ′
1;P2)〉)

if it can be evolved (i.e. 〈B,A,P1〉→ 〈B′,A′,P ′
1〉). The rule seq> does it by progressing the second

part of the sequence (i.e. 〈B,A, (nil;P)〉→ 〈B′,A′,P ′〉) only when the first program is completed

(i.e. nil;P) and the second part can be evolved (i.e. 〈B,A,P〉→ 〈B′,A′,P ′〉).
Unlike the sequenced programs, a concurrent program P1‖P2 may be evolved by evolving

either parts independently, provided they can be evolved. However, in order to successfully

terminate the concurrent program P1‖P2, both parts need to be terminating. Therefore, we can

have the following set of rules to capture the behaviours of the concurrent programs:

〈B,A,P1〉→ 〈B′,A′,P ′
1〉

〈B,A, (P1‖P2)〉→ 〈B′,A′, (P ′
1‖P2)〉 ‖1

〈B,A,P2〉→ 〈B′,A′,P ′
2〉

〈B,A, (P1‖P2)〉→ 〈B′,A′, (P1‖P ′
2)〉 ‖2

〈B,A, (nil‖nil)〉→ 〈B′,A′,nil〉 ‖end

In detail, the rule ‖1 says that if the program P1 in P1‖P2 can be evolved to P ′
1 (i.e. 〈B,A,P1〉→

〈B′,A′,P ′
1〉), then P1‖P2 can be evolved to P ′

1‖P2 (i.e. 〈B,A, (P1‖P2)〉→ 〈B′,A′, (P ′
1‖P2)〉). The rule

‖2 can be explained in a similar way. Therefore, both rules ‖1 and ‖2 enable the agent to evolve as

long as one of its concurrent programs can be progressed. The rule ‖end formalises the termination

of a concurrent program P1‖P2 when both P1 and P2 are terminating.

Finally, we present the last handful of derivation rules that capture the behaviours of the

declarative goal program goal(ϕs,P,ϕ f ). Recall that the declarative goal goal(ϕs,P,ϕ f ) in CAN

agents provides an explicit procedural program P which specifies how the agent might bring

about the success condition ϕs, and stops evolving goal(ϕs,P,ϕ f ) if the failure condition ϕ f turns

out to be true. In other words, the failure condition ϕ f encodes when it is deemed impossible for

the agent to continue executing. Therefore, the first intuitive derivation rule for a declarative

goal program goal(ϕs,P,ϕ f ) is when either ϕs and ϕ f holds true. The following two rules enable

the agent to drop the declarative goal program if it becomes achieved (i.e. B |=ϕs) or impossible

(i.e. B |=ϕ f ) where ?false is a syntactic sugar to denote a failed program.

B |=ϕs

〈B,A,goal(ϕs,P,ϕ f )〉→ 〈B,A,nil〉 Gs
B |=ϕ f

〈B,A,goal(ϕs,P,ϕ f )〉→ 〈B,A,?false〉 G f
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When a declarative goal program is encountered during execution, and not already true

or deemed impossible (i.e. B 2ϕs ∨ϕ f ), then the agent will typically initialise the execution of

a declarative goal program by setting the procedural program P which has no recovery plan

available (i.e. P 6= P1 �P2) in the such a declarative goal to be P �P. Formally, the following rule

Ginit formalises the initialisation process:

P 6= P1 �P2 B 2ϕs ∨ϕ f

〈B,A,goal(ϕs,P,ϕ f )〉→ 〈B,A,goal(ϕs,P�P,ϕ f )〉 Ginit

Such an initialisation process has the following two important advantages. Firstly, it retains

the first P to be executed to potentially reach the success condition as given in the original

goal program. Secondly, it replicates the original procedural program P and stores itself as an

alternative plan for failure recovery when the first program P gets blocked. Therefore, the agent

can carry on repeating the execution of procedural program P as long as neither the success

condition nor failure condition holds.

To respond to the first advantage of the initialisation, a new derivation rule Gseq is defined

for performing a single step of the first program on an already initialised program as follows:

P = P1 �P2 B 2ϕs ∨ϕ f 〈B,A,P1〉→ 〈B′,A′,P ′
1〉

〈B,A,goal(ϕs,P,ϕ f )〉→ 〈B′,A′,goal(ϕs,P ′
1 �P2,ϕ f )〉 Gseq

To respond to the second advantage of the initialisation, a new derivation rule G� is defined

for situations when the first program which is currently pursued cannot continue further. To

handle this situation, the very original procedural program replicated as P2 in P1 �P2 will be

re-instantiated as the current strategy (i.e. P2 �P2), in the hope that it could work in the new

environment. Formally, the following derivation captures the re-instantiation process when the

current procedural program gets stuck:

P = P1 �P2 B 2ϕs ∨ϕ f 〈B,A,P1〉9
〈B,A,goal(ϕs,P,ϕ f )〉→ 〈B,A,goal(ϕs,P2 �P2,ϕ f )〉 G�

To be precise, if the current strategy P1 is blocked (i.e. 〈B,A,P1〉9) and P1 has a backup strategy

(i.e. P = P1 � P2), then P2 will be re-instantiated for another round of attempt. Of course, this

only happens when neither success nor failure condition holds (i.e. B 2 ϕs ∨ϕ f ). Once those

conditions above hold, the declarative goal program goal(ϕs,P1 �P2,ϕ f ) is re-instantiated to be

a new declarative goal program, namely goal(ϕs,P2 �P2,ϕ f ).

2.3.2.2 Agent-level Execution

We now present the semantics of agent-level execution, which sits on the top of intention-level

execution, characterising the evolution of an agent. We start with the concept of an agent

configuration. Formally, an agent configuration is defined by 5-tuple configuration 〈Π,Λ,B,A,Γ〉
consisting a plan library Π, an action description library Λ, a belief base B, the sequence of
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actions A that has been executed so far, and the intention base Γ. The intention base by definition

is a set of current intentions (i.e. the agent programs P ∈Γ). In general, there are three operations

that the agent-level execution needs to perform, namely (i) select an intention and execute a

step; (ii) incorporate any pending external events; and (iii) update the set of intentions. In other

words, an agent needs to take steps on some active intention, assimilate external events that

have appeared (e.g. external requests), and discard the intentions that either completed or failed.

In the following, we will present the three kinds of agent-level transitions and their related

derivation rules.

The first step in an agent-level execution is to select an intention from the intention base, and

evolve it one step by making a legal intention-level transition which is defined in Section 2.3.2.1.

The following derivation rule captures the intention selection and execution.

P ∈Γ 〈B,A,P〉→ 〈B′,A′,P ′〉
〈Π,Λ,B,A,Γ〉→ 〈Π,Λ,B,A, (Γ\{P})∪ {P ′}〉 Astep

The rule Astep says that if an intention P ∈Γ is selected for executing one step becoming P ′ (i.e.

〈B,A,P〉→ 〈B′,A′,P ′〉), then the intention base will be updated from Γ to (Γ\{P})∪ {P ′}.
The second step in an agent-level execution is to incorporate external events which originate

from the environment. For instance, the external event may account for the request from another

agent that it must react to. Indeed, an intelligent agent should be able to handle an unexpected

event while pursuing its current intentions. To assimilate an external event e, the agent simply

needs to add it to its current intention base(i.e. Γ∪{!e}). Therefore, we have the following derivation

rule Aevent to incorporate a new external event as a new intention:

e is a new external event
〈Π,Λ,B,A,Γ〉→ 〈Π,Λ,B,A,Γ∪ {!e}〉 Aevent

The third step in an agent-level execution takes care of terminating intentions which cannot

execute further (i.e. 〈B,A,P〉9). Formally, the following derivation rule Aupdate is defined to

remove an intention (i.e. Γ\{P}) that cannot make any further transition:

P ∈Γ 〈B,A,P〉9
〈Π,Λ,B,A,Γ〉→ 〈Π,Λ,B,A,Γ\{P}〉 Aupdate

2.3.3 Scenario

In this section, we demonstrate some of these fundamental concepts of a CAN agent in Sec-

tion 2.3.1 and Section 2.3.2 via a simplified robot cleaning example.

2.3.3.1 Scenario Description

We begin with conceptually describing the scenario of our simplified robot cleaning example

(adapted from the original AgentSpeak work in [Rao96]). Let it be a traffic world where there are

four adjacent lanes, namely lane a, b, c, and d. The physical layout of traffic world is that the
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lane a is situated adjacent to the lane b, lane b adjacent to lane c, and lane c adjacent to lane

d. In this traffic world, there is a cleaning robot whose jobs is to keep these four adjacent lanes

clean. Such a cleaning robot can perform three basic actions, namely moving to the next adjacent

lane, picking up the waste (if any) on the lane it is on, and depositing the waster in the bin. It

is assumed that the environment is dynamic and pervaded by uncertainty. Therefore, there is

a possibility that the waste can appear on any of the lanes at any time. The following graphic

depicts such a traffic world cleaning scenario where the robot is initially on lane a, the waste on

lane b, and the bin on lane d shown in Figure 2.1.

lane a lane b lane c lane d

Figure 2.1: Clean Robot in a Traffic-world

In order to keep these four lanes clean, the cleaning robot will have to move around to pick

up the waste (if any) and place it in the bin. When there is no waste on any lane, the robot should

remain idle to save energy. In other words, it can be concluded that the robot should only start

the cleaning operation when there is a waste on at least one lane. Once the robot is initiated to

clean the waste due to the appearance of the waste, the robot will need to perform three different

type of tasks. In detail, the first task is to move to the lane where the waste is on. If the robot

and the waste happen to be on the same lane, no moving action is required. When the robot is

situated on the same lane as the waste, the robot needs to perform the picking up action to collect

the waste. When the waste is successfully collected, the robot then needs to move to the lane

where the bin is and deposit the waste in the bin in the end.

2.3.3.2 Scenario Modelling in CAN Language

We now formally model the cleaning robot scenario in Section 2.3.3.1 in CAN formalism. We

first start with the syntax which this scenario requires. Recall that the cleaning robot scenario

contains objects, namely four lanes, one robot, waste, and one bin. Therefore, we can simply use

these object names to denote their self-explanatory constants. In detail, we have constants such

as a, b, c, and d to denote each corresponding lane, and constants robot, bin, and waste for the

rest of objects in this traffic world. On top of these constants, we will have a set of predicates to

encode the relations between these objects. The first predicate is location(X,Y) which defines

that X is at location Y (e.g. location(robot,a)). The second predicate is adjacent(X,Y) which
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1 // Initial beliefs
2
3 adjacent(a,b)
4 adjacent(b,c)
5 adjacent(c,d)
6 location(robot,a)
7 location(bin,d)
8 location(waste,b)

Figure 2.2: BDI Agent Belief Design in the Robot Cleaning Scenario

defines that something is adjacent to something else, e.g. adjacent(a,b). In fact, these two types

of predicates are already sufficient for us to encode the physical layout of the traffic-world and

the location of the robot and bin shown in Figure 2.1. The set of base beliefs is given in Figure 2.2

We now continue to introduce predicates to build up the plan library of the resulting robot.

Firstly, we need a set of action predicates, namely move(Y,Z), drop(X,Y), pick(X), and stop.

Intuitively, the action predicate move(Y,Z) defines the action of moving from the lane Y to lane Z

whereas the predicate drop(X,Y) says that the robot can drop one object X into another object

Y. The predicate pick(X) states the action of picking up the object X while the predicate stop

represents an empty action which does nothing. These action predicates, along with the terms,

give us a set of actions. For example, the action move(Y,Z) standing for moving from location

Y to lcoation Z requires the precondition of location(Y), and results in deletion of base belief

of location(Y) and addition of the base belief of location(Z). In this thesis, we assume that

the meaning of these actions can be intuitively derived. Therefore, we leave the action library

undefined. Secondly, we need suitable predicates for the triggering events in our plan rules. Recall

that it is concluded in Section 2.3.3.1 that the presence of the waste initiates the robot. Therefore,

we can have a triggering event of the form the belief addition, namely +location(waste,b)

showing that there is a waste in location b. Furthermore, it is also mentioned in Section 2.3.3.1

that the robot needs to perform three different types of tasks, namely moving, collecting, and

depositing. Therefore, we have the following event goals as triggering events, namely !go(X),

!collect(waste), and !deposit(waste,bin). Intuitively, the event goal !go(X) stands for moving

to a location X, !collect(waste) collecting the waste, and !deposit(waste,bin) depositing the

waste in the bin. Finally, we introduce another belief predicate has(robot,waste) to confirm the

robot succeeds in picking up the waste.

We now present the rest of design of our cleaning robot in this traffic world by showing its

initial event goal(s), and plan library1 shown in Figure 2.3. In this scenario, there is no initial

goal, e.g. external events, provided by the BDI programmers. The set of plans for this cleaning

robot is given on lines 5-10. The plan on line 5 is written to get triggered when some waste

appears on a particular location. It instructs the agent to respond to two event goals, namely

!collection(waste) and !deposit(waste,bin), in order. The plans on line 6 and 7 are the two

1Note that we use & for ∧ and <− for ← in the actual agent programs.
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1 // Initial goals
2
3 // Plan library.
4
5 +location(waster,X) : location(bin,Y) <- !collect(waste); !deposit(waste, bin)
6 +!collect(X) : has(robot,X) <- stop
7 +!collect(X) : not has(robot,X) & location(X,Y) <- !go(Y); pick(X)
8 +!go(X) : location(robot,X) <- stop
9 +!go(X) : location(robot,Y) & adjacent(Y,Z) <- move(Y,Z); !go(X)
10 +!deposit(X,Y) : has(robot,X) & location(Y,Z)<- !go(Z); drop(X,Y)

Figure 2.3: BDI Agent Plan Library Design in the Robot Cleaning Scenario

strategies to handling the event goal !collection(waste), i.e. collecting the waste if it appears.

First, if the robot has already picked up the waste (i.e. has(robot,X)), then the robot does

nothing apart from the action stop according to plan on line 6. Second, if the robot does not have

waste in hand and the waste is at another location, then the robot needs to move to that location

first and subsequently pick up the waste shown by the plan on line 7. Similarly, the plans on line

8 and 9 specify the different strategies to move to a location based on where the robot is. Finally,

the plan on line 10 encodes the strategy of handling the event goal !deposit(waste,bin). It

instructs the agent to deposit the waste in the bin by first moving to the location of the bin and

then actually dropping the waste in the bin.

2.3.3.3 Scenario Execution in CAN

We now explain how our cleaning robot modelled in CAN agent functions regarding the derivation

rules we introduced previously. In particular, we focus on the transition of the intention-level

configuration. Suppose next that, at some point, some waste appears on a particular location

(shown in red in initial beliefs on line 8) in Figure 2.2. In other words, a triggering event of the

form of +location(waste,b) is present waiting to be addressed. In this case, the derivation

rule event introduced in Section 2.3.2.1 can produce the following program containing the set of

relevant plans available for handling such an event:

+location(waste,b): (|location(bin,Y):!collect(waste); !deposit(waste,bin)|) (1)

In this particular case, we can see there is only one relevant option to repsond to the event

+location(waste,b). Since the agent believes location(bin,d) to be true, the derivation rule

select will evolve the set of relevant plans shown in (1) and yeild the following program after

applying the unifier Y/d:

!collect(waste); !deposit(waste,bin) � +location(waste,b): (||) (2)

where +location(waste,b): (||) stands for empty alternative strategies available for recovery

if the current one failed. The following pictorial illustration depicts the evolution of the program

+location(waste,b) shown in Figure 2.4. In detail, we can see that e = +location(waste,b)
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e
︷ ︸︸ ︷
+location(waste,b)

e

e : (|∆ |)
︷ ︸︸ ︷
+location(waste,b):

︷ ︸︸ ︷
(|location(bin,Y)︸ ︷︷ ︸:!collect(waste); !deposit(waste,bin) |) (1)

∆e

ϕ

P � e : (|∆\{ϕ : P} |)
︷ ︸︸ ︷
!collect(waste); !deposit(waste,bin) �

︷ ︸︸ ︷
+location(waster,b) : (

︷︸︸︷
|| ) (2)

P |∆\{ϕ : P} |e

rule: event

rule: select

Figure 2.4: Semantic Evolution Flow of the Program +location(waste,b).

is evolved to e : (| ∆ |) by the rule event where the set of relevant plans is denoted as ∆ =
location(bin,Y):!collect(waste); !deposit(waste,bin). Afterwards the program e : (|
∆ |) is further evolved to be P � e : (| ∆\ P |) through the derivation rule select where P =
!collect(waste); !deposit(waste,bin).

The agent may next execute program !collect(waste); !deposit(waste,bin) in which

both the first and second step involve resolving the event goal of collecting waste and depositing

waste in the bin, respectively. To resolve the event goal, it in turn has to employ first the

derivation rule event and then select. Suppose that the agent now uses the derivation rule

event to respond to the first event goal !collect(waste). The program above in (2) can evolve

to the following program in (3):

P_col; !deposit(waste,bin) � location(waster,b): (||) (3)

where P_col def==collect(waste):(|ϕ1:stop,ϕ2:!go(Y); pick(X)|), ϕ1 = has(robot,waste),

and ϕ2 = not has(robot,X)∧ location(waste,Y). The program P_col is actually the evolution

of the program !collect(waste) shown in (2). Since the agent believes not has(robot,waste)

and location(waste,b) to be true, then the program P_col keeps evolving into the following

program shown in (4):

!go(b); pick(waste) � collect(waste): (|has(robot,waste):stop|) (4)

It is noted that the agent is obligated to carry out P_col to full completion (if possible) before

it can respond to the second event goal !deposit(waste,bin) in (3). We can see that in order

to evolve the program shown in (4), the same process of using event and select derivation

rules will be needed to apply again to repsond to the event goal !go(b). Since the agent believes

that location(robot,a) and adjacent(a,b) to hold, the event goal !go(b) would evolve to the

following program in (5):

move(a,b); !go(b) � go(b): (|location(robot,b):stop|) (5)

Recall that once the agent has selected an applicable strategy, such a strategy needs to pursued

to completion whenever possible. As such, the derivation rule seq ensures the current strategy to
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be executed one step, namely the action move(a,b). When executing the action move(a,b), the

derivation rule act updates the belief base and evolve the action move(a,b) to nil. Meanwhile,

it results in the addition of base belief of location(robot,b) and the deletion of base belief

of location(robot,a). For brevity, we omit the rest of the evolution of remaining programs.

However, it is not difficult to see that the set of derivation rules of intention-level transition nicely

and succinctly define how to execute an agent step by step.

2.3.4 Other BDI Architectures

In this section, we briefly discuss a few other relevant BDI Agent-oriented Programming (AOP)

languages that will be mentioned in this thesis. The first one is called Artificial Autonomous

Agents Programming Language (3APL) [HBHM99] and its extended version A Practical Agent

Programming Language (2APL) [Das08]. Similar to CAN language, 3APL is also a variant of

AgentSpeak. It has been studied and shown in [HBHM98] that the AgentSpeak agent can be

replicated by a matching 3APL agents. Therefore, 3APL has at least the same expressive power

as AgentSpeak. In addition to being able to simulate AgentSpeak, 3APL also supports some form

of failure handling along with standard plan rules, namely failure plan rules. Usually, such failure

plan rules in 3APL are constructed to deal with failure and are given a higher priority than

those standard plan rules. In fact, both CAN and 3APL are quite similar to each other regarding

the features they provide and their formal style. However, unlike the 3APL addressing failure

handling via pre-defined failure rule, CAN does it in a more semantic style by backtracking

and trying alternative plans (if available). Concretely speaking, the failure handling in 3APL

is considered as explicit knowledge provided by agent programmers to the agent whereas the

failure handling in CAN is integrated as a part of already built-in reasoning engine free from

actual agent programming. In addition, given the merit of declarative goals in CAN [WPHT02],

the researches also extends 3APL to have this feature e.g. in [RDM05]. Finally, it is evident

that both of CAN and 3APL give a succinct and full account of the operational semantics of a

BDI AOP language. Later on, 2APL extends 3APL for implementing multi-agent systems. In

achieving so, there are many new programming constructs proposed for a multi-agent setting, e.g.

communication actions. Noticeably, in 2APL plan repair rules are applied only to repair failed

plans whereas 3APL plan repair rules can be applied to revise any arbitrary plan. Furthermore,

2APL also proposes a new plan constructs to implement a non-interleaving execution of plans.

The second BDI language is Jadex [PBJ13] which is a Java-based BDI AOP language. The

objective of Jadex is to allow for intelligent agent construction using sound software engineering

foundation. Therefore, it extends Java with programming constructs to implement BDI concepts

such as beliefs, goals and plans. Normally, an XML language is used for the specification of beliefs,

goals and plan identifier as well as their initial values whereas the plan bodies are realised in

the Java language. This Java-based representation in Jadex automatically differs itself from the

logic-based representation in CAN and 3APL. Unlike using events to directly trigger the adoption
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of plans like in CAN and 3APL, Jadex has explicit goals whose lifecycle consists of option, active,

and suspended. Furthermore, Jadex also has the type of maintenance goal: an agent keeps

track of the desired state, and will continuously execute appropriate plans to re-establish the

maintained state whenever needed. However, Jadex still follows the similar reasoning cycle as

CAN and 3APL, i.e. processing events, selecting relevant and applicable plans, and execute them.

Finally, we look at another different BDI framework which is formal logic-based, called X-

BDI in [MLVC98]. They propose a logical formalism used to define the models of BDI that has

an operational model that supports them. By being an operational model, it means that proof

procedures are correct and complete concerning the logical semantics, as well as mechanisms to

perform different types of reasoning needed to model agents. To begin with, it assumes that the

beliefs of the agent are not always consistent. Therefore, it provides the capacity to minimally

revise the agent program to ensure the consistency of the beliefs. Also, it assumes that the set

of desires (i.e. a collection of formulas) are not always consistent and not always concurrently

achievable as well. Therefore, it creates two intermediate subsets of desires before committing,

i.e. reasoning intentions. The first subset of desires consists of desires such that their adoption

conditions hold, but the current belief base does not support their final desired conditions. This

first subset of desires is also called eligible desires. X-BDI then selects a subset of the eligible

desires that are both consistent regarding their final desired conditions, and possible. By being

possible, it means that there is a plan that can transform the belief base so that the final desired

conditions become true. In X-BDI, such a possibility proof is verified through the logic abduction,

which involves generating and applying a set of environment modification actions that results in

the entailment of the final desired conditions.

2.4 Planning

In this section, we introduce the First-principles Planning (FPP) – devising a plan of actions to

achieve some goals – which is also called classical planning.

2.4.1 Model for FPP

The conceptual model underlying FPP can be described as a 5-ary tuple 〈S, s0,SG , A, f 〉 where

• S is a finite and discrete set of states;

• s0 ∈ S is the fully known initial state;

• SG ⊆ S is the non-empty set of goal states;

• A(s)⊆ A is the set of actions in A that are applicable in a given state s ∈ S; and

• f (a, s) is the deterministic transition function where f (a, s)= s′ is the state that follows s

after doing an action a ∈ A(s).
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The purpose of planning is to find which actions can be applied to which states in order to achieve

the goal state when starting from some given initial state. Therefore, a solution or plan of this

model is a sequence of actions a1, . . . ,an that generates a state sequence s0, s1, . . . , sn where s0 is

an initial state and sn a goal state. To be precise, the action ai is applicable in the state si−1 if

ai ∈ A(si−1), the state si follows state si−1 if si = f (ai, si−1), and sn is a goal state if sn ∈ SG .

2.4.2 Languages for FPP – STRIPS

While the conceptual model for First-principles Planning (FPP) above provides an elegant math-

ematical formalism of the problem, it would be impossible for a planning problem to include

an explicit enumeration of all possible states and state transitions. In what follows we will,

for simplicity, stick to Stanford Research Institute Problem Solver (STRIPS) [NF71] formalism

whose input includes (i) an initial state, (ii) a goal formula which is built from logic ground atoms,

and (iii) a set of operators.

Let a state s be a finite set of ground atoms. An initial state s0 is a state. A goal formula

ϕg is built from the ground atoms using the normal connectives {¬,∧,∨}. Unlike the model

in Section 2.4.1 which requires enumerating the set of all goal states, the goal formula ϕg is

introduced so that the set of states that entails ϕg is the set of goal state, i.e. SG = {s | s |=ϕg} .

An operator has a precondition encoding the conditions under which the operator can be applied,

and a post-effect encoding the outcome of applying the operator. An operator o is of the form

〈pre(o),del(o),add(o)〉 where pre(o),del(o), and add(o) are the precondition, delete-list, and

add-list, respectively. The delete-list (resp. add-list) encodes the atoms which will be removed from

(resp. added to) the state of the world after the operator has been applied. For convenience, the

form of 〈pre(o),del(o),add(o)〉 for an operator o can be often given as a 2-tuple 〈pre(o), post(o)〉
in which post(o)= add(o)∪ {¬l | l ∈ del(o)} denotes a set of literals that conjoin the add-list and

delete-list through taking the delete-list atoms as negative literals.

Let s0 be the initial state, ϕg be the goal formula, and O a set of operators, an FPP planning

problem is a 3-ary tuple 〈s0,ϕg,O〉. The task of such a planning problem is to find a sequence of

operators from O that reaches one of goal states sG ∈ SG such that sG |=ϕg when executed from

the initial state s0. We now illustrate with an example the notions presented as follows.

Example 2. Suppose there is a cleaning robot in a two-grids world with the initial state

s0 ={agent(left), dirt(left), dirt(right)} as shown in Figure 2.5. The goal of this robotic

vacuum cleaner is ϕg =¬dirt(left)∧¬dirt(right)∧agent(left). There are four operators

available for this robotic cleaner, namely o1 =move(left), o2 =move(right), o3 =clean(left),

and o4 =clean(right). For example, the operator o1 = move(left) has an empty precondition

pre(o1) = > (i.e. always true), the delete-list del(o1) = ; (i.e. delete nothing), and the add-

list add(o1) = {agent(left)}. Meanwhile, the operator o3 = clean(left) has a precondition

pre(o1) =agent(left), the delete-list del(o1) = {dirt(left)} (i.e. no longer dirty on the left),

31



CHAPTER 2. PRELIMINARIES

left right

Figure 2.5: Robotic Cleaner in a Two-grid World

and the add-list add(o1)=; (i.e. add nothing). Similarly, we can easily give the specification of

operator o2 and o4 regarding precondition, delete-list , and add-list.

When an operator is executed in a given state, the delete-list atoms will be deleted from the

state if they are already in such a state while the add-list atoms will be included in the state if

they are not already in such a state. Formally, the effects of applying an operator o to a state s

can be described by the transition function defined as follows:

f (s, o)=
(s \del(o))∪add(o) if s |= pre(o)

undefined otherwise

In a similar manner, the effects of applying a sequence of operators to a state can be defined as

follows. Let 〈o1; . . . ; on〉 be a sequence of operators and s0 be a state. The effects of applying the

sequence 〈o1; . . . ; on〉 to s0, denoted as Res(s0,〈o1; . . . ; on〉), is defined inductively as follows:

Res(s0,〈o1; . . . ; on〉)= Res( f (s0, o1),〈o2; . . . ; on〉);
Res(s0,〈〉)= s0.

Intuitively, Res(s0,〈o1; . . . ; on〉) specifies that the effects of applying a sequence of operators to a

state s0 is the effects of applying the first operator of the sequence to s0, namely o1, to obtain

state s1 (i.e. s1 = f (s0, o1)) and so on, until state sn is obtained by applying the last operator of

the sequence to state sn−1. We also call the state sn the final state. It can be noted that state

transitions can easily be computed using set operations, i.e. set addition and deletion.

We now can define what is a solution to an FPP planning problem in STRIPS formalism.

Recall that a plan is a sequence of operators that can achieve the goal formula from an initial

state. Therefore, a plan for an FPP problem 〈s0,ϕg,O〉 is a sequence of operators 〈o1; . . . ; on〉 such

that Res(s0,〈o1; . . . ; on〉) |=ϕ, i.e. the preconditions of operators in 〈o1; . . . ; on〉 are met and the last

state makes the goal formula (i.e. the goal state) hold. The following example illustrates what

both the transition functions and a plan look like for an FPP problem introduced in Example 2.

Example 3. Recall that the initial state is s0 ={agent(left), dirt(left), dirt(right)} and

the goal formula ϕg = ¬dirt(left)∧¬dirt(right)∧ agent(left) in Example 2. Then, a

possible plan for this FPP problem is the following sequence of operators o3; o2; o4; o1 where
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o3 = clean(left), o2 = move(right), o4 = clean(right), and o1 = move(left). Briefly, this

sequence of operators instructs the agent to clean the dirt on the left, move to the right, clean

the dirt on the right, and move back to the left. To illustrate the transition function, for in-

stance, the result of applying operator o3 = clean(left) to state s0 ={agent(left), dirt(left),

dirt(right)} is the state s1 ={agent(left), ¬dirt(left), dirt(right)}.

So far, what we have discussed is known as offline planning which generates a complete

plan and then executes in full. An alternative is online planning which differentiates itself

from offline planning by not fully elaborating a plan before execution, but instead to interleave

planning and execution. Typically, online planning does so by calculating one or more “best"

actions, executes these, and then continues another round of online planning from the newly

arrived state. Indeed, online can often be more practical and has a broader scope in a highly

dynamic and uncertain environment. In particular, online planning can deal with FPP problems

whose models are not completely accurate (e.g. due to the actual dynamics of the environment).

For example, when the agent expects a state s′ after performing an action a in a state s, it is

actually a different state s′′ observed, provided that the state is fully observable in this case.

Unlike the offline planning which may get stuck, e.g. due to the inapplicability of, e.g. actions,

in the following action state s′′ , the online planning can replan from the s′′ instead. One of the

special cases, which will be focused in this thesis, is to generate the next best action, execute,

and then repeat. Formally, let an FPP problem be 〈s0,ϕg,O〉. The online planning produces an

incomplete plan o1 towards achieving one of goal states that entails ϕg. If s1 |= ϕg holds (i.e.

the goal state is reached) where s1 is the actual state after executing o1, then planning stops.

Otherwise, it repeats the same process but for the new FPP problem 〈s1,ϕg,O〉 until the goal

state is reached. This particular case of online planning commonly employs an approximate

method such as Monte-Carlo Tree Search (MCTS) [BPW+12]. Therefore, it allows not only to

return “good enough" actions anytime [KE12], but also to replan when an unexpected situation is

encountered while acting efficiently. Further to this, we assume the existing algorithms of online

planning but will not discuss these in detail.

2.4.3 Other Planning Formalisms

In this section, we first briefly discuss a few other planning formalisms that will be mentioned

in this thesis. Secondly, we will discuss the state-of-the-art of related planning techniques and

languages. Note that further in this thesis we use planning as a black box. We communicate

with the planning algorithm using a common language. Afterwards, the result of planning is

applied in the Belief-Desire-Intention (BDI) framework to improve the capabilities of the agents.

The benefit of this approach is that in the future we can adopt any innovations in the planning

community by simply swapping the actual planner we use, as long as that planner uses the same

common (planning) language.
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The planning formalism we describe in Section 2.4.1 is based on a deterministic view of the

environment. It assumes that if an action succeeds, it will transition the environment into one

particular expected state. However, it is often necessary and beneficial to consider the so-called

probabilistic planning. One popular formalism for modelling planning in this setting is the

Markov Decision Processes (MDPs). MDPs generates the model underlying FPP in Section 2.4.1

by allowing actions with stochastic effects. In particular, it replaces the deterministic transition

function f (a, s) by transition probabilities Pa(s′ | s) for s′ being the next state after doing the action

a ∈ A(s) in the state s where A(s) stands for the set of applicable actions in state s. Effectively,

it says that the environment transition between states stochastically, and the probability of

transitioning from one state to another depends partially on the current state and partially on

the action that the agent executes. The solution for MDPs is a function mapping the states into

actions, i.e. take actions based on what state the agent is. These functions are also called policies.

Partially Observable Markov Decision Processes (POMDPs) further generalise MDPs by

allowing states to be partially observable through sensors that map the true state of the world

into observable tokens according to known probabilities. In one form of MDPs with a specific goal

to reach, also called Goal MDPs, its task is to reach the goal with certainty given a known initial

belief, actions, and observations that change the world and the beliefs. Unlike MDPs, POMDPs

is no longer assumed to be fully known in the initial situation. Also, POMDPs no longer provide

full information about the state of the world after executing each action. To get the formalism of

Goal POMDPs, there are a few more components to added or modified from Goal MDPs. Firstly,

there is a probability distribution b0 over the states such that b0(s0) stands for the probability

of s0 being the true initial state. In general, the probability distributions over states are also

called belief states. Secondly, there is a sensor probabilities Pa(ot | s) of receiving observation

token ot in state s when the last applied action was a. It is required that the probabilities are

defined for each state s ∈ S and action a ∈ A, and that, given a state s and an action a, their sum

is 1, i.e.
∑

ot∈Ot Pa(ot | s)= 1 where Ot is a finite set of (o)bservable (t)okens. Finally, it should be

stressed that the goal states are assumed to be observable so that there is never uncertainty

about whether the goal has been reached or not. The selection of the best action for achieving a

goal in POMDPs depends on the observed execution 〈a1, o1,a2, o2, . . .〉. This is because that the

last observation no longer summarises the previous execution. However, it is shown that the

belief state does. Therefore, the policy of POMDPs is a function that maps belief states to actions.

In the forms of planning considered so far, their focus on bringing about the states of affairs,

i.e. the so-called “goal-to-be". Actions are only characterised in terms of their preconditions and

effects (or stochastic transition functions). The choice and order for these actions for reaching the

goal are computed automatically. However, the Hierarchical Task Networks (HTN) planning (e.g.

in [EHN94]) provides an entirely different way of constructing plans. Unlike finding an action

sequence that maps the initial situation into a goal state, the objective of HTN planning is to

perform some set of tasks. Typically, these tasks are described at several levels. The tasks at
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one level can be decomposed into tasks at a lower level until the primitive tasks are reached.

These primitive tasks usually stand for real executable actions that do not decompose further.

In order to decompose non-primitive tasks, pre-described methods are specifying when these

tasks can be decomposed into what sub-tasks in which order. Therefore, we say that a problem

of HTN planning is solved if HTN finds a decomposition for the given tasks that results in a

consistent network of primitive tasks. The advantage of HTN is that it provides a convenient

way to write problem-solving recipes that correspond to how a human domain expert might think

about solving a planning problem. In Section 3.2, we can see that the similarities between HTN

and BDI and integrations of these two have been intensively studied in BDI community.

We now discuss the state-of-the-art of those planning techniques mentioned in this chapter.

To begin with, there are a number of classical planners over benchmarks from the International

Planning Competition (IPC)2, e.g. FF [HN01]. The scalability of planners has improved consider-

ably over the last two decades and is still improving now. Regarding the MDPs and POMDPs, it is

usually infeasible to finding a complete optimal policy as the size of the problem grows. In recent

years, the focus has shifted to approximate methods such as MCTS, often referred to as online

planners. Online planning methods are not aimed at computing partial or complete policies, but at

the selection of the action to do next in a planning-and-execution cycle. Recent improvement has

led to very competitive online planning algorithms, e.g. UCT in [KS06] for MDPs and PO-UCT

in [SV10] for POMDPs. Regarding the HTN planning, due to its expert-led nature, it has been

commonly applied in applications with success, e.g. business process management in [GFFOC13],

with numerous existing planners.

Finally, along with the progress of planning techniques, the planning community has also

long been employing the standardised Planning Domain Definition Language (PDDL). The

creation and the adoption of this common language have fostered significant reuse of research,

allowed more direct comparison of systems and approaches, and therefore has been supporting

faster progress in the language. The main feature of PDDL is that it separates the model of

the planning problem in two major parts: (i) domain description and (ii) the related problem

description. Intuitively, the domain description is intended to express the general knowledge

of a domain. For example, it usually includes, e.g. what predicates there are, what operators

are available, and what the effects of actions are. The STRIPS formalism is typically used for

presentations of, e.g. predicates and operators. Therefore, PDDL can be, to some extent, regarded

as the extension of STRIPS. The problem description, however, presents a specific planning

problem. It usually gives the initial state of the planning environment, i.e. a conjunction of true

and false facts, and the goal formula, i.e. a logical expression over facts that should be true or false

in a state of the planning environment. Ever since the creation of PDDL, it has been continuously

extended to support many other advanced features. To name a few, PDDL2.1 introduced numeric

fluents to model non-binary resources such as fuel-level whereas PDDL2.2 provided timed initial

2http://www.icaps-conference.org/index.php/Main/Competitions
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Figure 2.6: Examples of Hierarchical Plan Library Structure

literals to model exogenous events occurring at given time independently from plan-execution.

The recent probabilistic track in IPC has adopted the language Relational Dynamic Diagram

Language (RDDL), which allows an efficient description of MDPs and POMDPs by representing

everything, e.g. observations and actions with variables. Finally, PDDL, as a common language

in the planning community, confirms our view of applying planning as a black box. As long as

the planners use the same common language, any improvement made to these planners will

immediately be applied to our approaches which utilise them in this thesis.

2.5 Graph Theory: Fundamentals

Finally, we introduce some fundamentals in graph theory. It turned out that the graph provides

an excellent vehicle to formalise the hierarchical structure manifested in the plan-library in BDI

agents. In detail, each plan in BDI agents is composed of steps which include such as actions

or event goals. The event goal can be addressed by a set of relevant plans, thus giving rise to a

top-down decomposing structure. Figure 2.6 shows a simple hierarchy in the plan library. An

event e1 can be achieved by either of the two plans P1 or P2. The plan P1 involves performing

the action act1 and handling the event goal e2 whereas the plan P1 consists of executing act2,

addressing the event goal e3, and executing act3. Therefore, it gives a natural hierarchy which is

also directed in the plan library. In the following, we succinctly describe the AND/OR graph.

A directed graph is a tuple (N,E) where N is a set of nodes and E ⊆ N ×N is a set of directed

edges. A multigraph is a tuple (N,L,E′) where L is a set of labels and E′ ⊆ N ×L×N is a set of

multiedges such that for each l ∈ L we have that (N, {(n,n′) | (n, l,n′) ∈ E′}) is a graph. We say n′

is a child of n, written as n′ ∈ child(n) iff (n, l,n′) ∈ E′ for some l ∈ L. Given nodes n1,nm+1 ∈ N in

a multigraph, then a sequence of nodes and labels (n1, l1, . . . ,nm, lm,nm+1) is a path from n1 to

nm+1 iff each n j is unique and (n j, l j,n j+1) ∈ E′ for j = 1, . . . ,m. We denote the length of a path of

(n1, l1, · · · ,nm, lm,nm+1) to be m. A multi-graph is acyclic if, for each n ∈ N, there exists no path

from n to itself. A rooted multigraph is a tuple (N,L,E′, n̄) where (N,L,E′) is a multigraph and
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n̄ ∈ N is a root node such that for each n′ ∈ N \{n̄}, there exists a path from n̄ to n′. We also say

that a node n is a branch point if n has more than one child, while a leaf node is a node n without

child nodes. An AND/OR graph (N∨∪N∧,L∨∪L∧,E∨∪E∧, n̄) is a rooted acyclic multigraph where

N∨ (resp. N∧) is a set of OR-nodes (resp. AND-nodes), L∨ (resp. L∧) is a set of OR-labels (resp.

AND-labels), E∨ ⊆ N∨×L∨×N∧ (resp. E∧ ⊆ N∧×L∧×N∨) is a set of OR-edges (resp. AND-edges),

and n̄ ∈ is a root node. Intuitively, an AND-node is a solution if each of its child nodes is a solution,

while an OR-node is a solution if it is a primitive solution, or at least one of its child nodes is a

solution. In the context of BDI agents, we can see that the plan nodes are naturally AND-nodes as

each of its children needs to be executed. The event goals are OR-nodes because it needs to select

one of its child nodes to handle it. Finally, the actions are trivially OR-nodes as well because they

are primitive solutions to execute. In Chapter 6, the formal AND/OR graph representation will

be given to formalising the structure of the plan library in BDI agents.

37





C
H

A
P

T
E

R

3
LITERATURE REVIEW

In this chapter we aim to provide a comprehensive overview of the existing approaches to improve

the related features of Belief-Desire-Intention (BDI) agents, namely the robust program execution,

adaptive plan library, and efficient intention progression. So we begin by discussing the recent

works on including planning in BDI to ensure the robust program execution by (i) synthesising

a new plan and (ii) applying lookahead planning on existing BDI plans. When appropriate, we

will also discuss the approaches where they investigate the reuse of plan from planning when

similar goals need to be achieved. With regard to efficient intention progression, we survey a

much broader scope of relevant works on extending the basic capabilities of BDI agents using

various techniques (e.g. optimisation) to support different aspects of agent reasoning, e.g. plan

selection (which plan to select) and intention selection (which intention to progress).

3.1 Planning to Generate New BDI Plans

We have previously discussed the mechanism of BDI agents in Section 2.3.2. Often, practical BDI

agents have avoided the use of First-principles Planning (FPP) in favour of a pre-defined plan

library to limit the computational complexity. This allows for fast agent reasoning by relying on

pre-defined recipes rather than on planning from scratch. However, it limits the autonomy and

robustness of the resulting agent by preventing it from reasoning about alternative courses of

action for the achievement of its design objectives. In particular, it causes difficulties in case of

the execution failure of the agent programs. For example, when an agent selects a plan to achieve

a given goal, it is possible that the selected plan may fail, e.g. the precondition of action in a plan

no longer holds before being executed. In these cases, the agent typically will conclude that the

goal has also failed. However, there may be potentially other plans that can successfully achieve
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the same goal. Therefore, it is arguably more desirable for an intelligent agent to try alternative

plans first than directly jumping to a conclusion of the failure of a goal.

Fortunately, to mitigate this problem, some works on BDI agents (e.g. Conceptual Agent

Notation (CAN) in [WPHT02]) have already taken some preliminary steps. For example, when a

plan failed to achieve a given goal, the failure recovery mechanism would try another applicable

plan (if any) to achieve such a given goal (discussed in Section 2.3.1). If no alternative plans are

available, then the failure is backtracked to higher-level goals. Such a form of failure handling

is usually implemented in a backtracking manner. Alternatively, some other BDI agent (e.g.

Artificial Autonomous Agents Programming Language (3APL) in [HBHM99]) possesses a set of

plan repair rules to allows plans to be repaired to handle the potential failure. While these meta-

level failure handlings can alleviate some of the limitations, the agent can still fail to achieve a

goal if either all plans fail, or the failure falls out of the set of plan repair rules. Therefore, to

address these shortcomings of BDI agents, a number of works have been done to include the

planning capacity to synthesis a new plan to still achieve a goal. In the rest of this subsection, we

give a comprehensive survey of these works. For the purpose of legibility, we group these work

in clusters based on the type of planning models, namely a deterministic model of planning (i.e.

Stanford Research Institute Problem Solver (STRIPS)-like planning), and a model of stochastic

state transition (i.e. probabilistic planning).

3.1.1 STRIPS Planning

We now start with discussing the work which includes a STRIPS-like planning capacity, i.e. a

deterministic planning system and environment. One of the very first pieces of work looking at

FPP in a BDI agent is the work of the Propice-plan framework [DI99]. It is the combination of the

IPP planner [KNHD97] and an extended version of the Procedural Reasoning System (PRS) agent

system [IGR92] in which each plan is also given an expected declarative effect. The PRS agent is

essentially the AgentSpeak without the operational semantics formalisation. In the framework of

Propice-plan, an execution module modelled in PRS paradigm takes care of selecting plans from

the plan library and executing them. If there is no applicable plan found, a plan module uses the

IPP planner to obtain a new plan at run time. To formulate plans, IPP planner uses the plans

of PRS agents as planning operators whose preconditions (reps. post-effects) are the contexts

(reps. the declarative effects) of the corresponding plans. The goal state of such an FPP problem

is the (programmer supplied) declarative effect of the achievement goal that failed due to no

applicable plan available. When a solution is found by IPP, it will be returned to the execution

module, which executes them by mapping these operators back into ground plans. Normally,

we also called this type of plan returned by IPP to be an abstract plan as the operators of such

plans are not primitive actions, e.g. STRIPS operators. Indeed, these abstract plans can only

be executed using the existing procedural domain knowledge in BDI agents. Finally, we note

that what this approach essentially does is to re-arrange existing plans. Thus, it is limited to the
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amounts of planning problems it can address, and is not possible to come up with new ideas (i.e.

new individual plans).

There is another similar piece of work [SSP09] which also seeks to obtain abstract plans in

the form of hybrid plans using FPP in BDI agents. In contrast to the abstract plan which solely

consists of operators corresponding to plans in [DI99], the work of [SSP09] produces plans made

up of both abstract operators and primitive operators (i.e. primitive actions). Therefore, it not only

reuses the existing procedural domain knowledge to find new plans other than those specified

by the programmers, but also conforms to it, i.e. respecting the user-intent principles [KMS98].

In this work, the abstract operators are corresponding to the event goals in BDI agents. To

transform an event goal into a planning operator, the authors first obtain the precondition of

the corresponding operator by simply taking the disjunction of the context conditions of plans

associated with such an event goal. However, it is not straightforward to obtain the post-effects of

an abstract operator for an achievement goal. Therefore, it adopts a summarisation algorithm of

[CDB07] to compute the definite effects of an event goal as its post-effects, given the structure

of this goal and its relevant plans, conjoined with the post-effects of related primitive actions.

When wishing to obtain a hybrid plan, FPP is given the information of the desired goal state,

the initial state, and abstract operators along with primitive actions under the assumption that

the proper integration of FPP and BDI agents is already done. Furthermore, the planning is

solved exclusively in an offline fashion. Also, because the abstract operators do not encode the

possible effects of an achievement goal, it is possible that when mapping back and executing,

such possible effects can block the goals (or operators in the hybrid plan). Therefore, the authors

also proposed a validation step to check the correctness of the plan obtained to ensure that a

successful decomposition is possible.

To further improve the ability of an agent when achieving its goals, the work of [ML07]

extended AgentSpeak that allows an agent to explicitly specify the state of the world that should

be achieved by the agent. In order to transform the state of the world to meet the desired

state, the agent uses FPP to form high-level plans through the composition of pre-defined plans

already present in its plan library. This FPP planner is invoked by the agent through a regular

AgentSpeak action in its existing language. The BDI agent may include this new planning

action at any point within a standard AgentSpeak plan to call a planner. In detail, a planner

invocation can be written as a standard AgentSpeak plan: +!goal_conj([b1, . . . ,bn]);true ←
plan([b1, . . . ,bn]) where goal_conj([b1, . . . ,bn]) is a conjunction of base beliefs which must be

made true in the environment and plan([b1, . . . ,bn]) the planning action for such a goal state.

Such a planning invocation plan tells that the execution of the planner component can always be

successfully triggered by an event +!goal_conj([b1, . . . ,bn]) and the planning action is bound to

an implementation of a planner. Similar to work [DI99], it also adopts the approach of converting

the plans of AgentSpeak into operators and takes the context of a plan as the precondition

of the corresponding operator. However, unlike the work of [DI99] employing the pre-supplied
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declarative effects of a plan as the post-effects of the corresponding operator, the work of [ML07]

can only convert the plan whose body consists of only belief additions or belief deletions. Also, as

the planning part creates new plans, the authors propose a plan reuse strategy [ML08] to reuse

the new plans generated by planning from the work [ML07] by assigning a proper context to new

plans from the planner. In the end, they settle down on a minimum context condition which they

claim neither too restrictive, nor too general. Such a minimum context specifies the preconditions

of the first operators, plus the preconditions of any subsequent operators that are not included in

the effects of previous operators.

Finally, there are another noticeable work of [MZM04], called X2-BDI, integrating planning

not only to generate new plans for BDI agents, but also verify the possibility of potential desires

before committing to them. Unlike the previous works we have discussed above, it differs itself

due to the version of BDI framework it is based on, namely X-BDI [MLVC98]. Recall that an

X-BDI agent has the traditional components of a BDI agent, i.e. a set of beliefs, desires, and

intentions. However, unlike most of the BDI agent architectures (e.g. AgentSpeak), X-BDI agents

do not include a library of pre-defined plans. In addition, every desire in an X-BDI agent is a goal

conditioned to a body of a logic rule. And the body of such a logic rule specifies the preconditions

that must hold in order for an agent to desire a goal. To select desires before committing them to

intentions, X-BDI agents first select a set of eligible desires whose preconditions hold and whose

goals do not hold yet. The second step is to select further a subset of the eligible desires, which

is called the candidate desires that are also possible. By being possible for a set of desires, it

means that there is a plan (consisting of primitive actions) that transforms the set of beliefs so

that the desired goals become true. However, this type of desire selection suffers from significant

inefficiencies. Therefore, instead of the slow logical abduction used in X-BDI for verifying the

possibility of desires, the work of [MZM04] improves on X-BDI with a STRIPS planner based

on Graphplan [BF97]. To do so, they provide a modified X-BDI along with a mapping from BDI

mental states to propositional planning problems and from propositional plans back to mental

states.

3.1.2 Probabilistic Planning

In Section 3.1.1, the planning formalisms employed in BDI agents hold a deterministic view of the

environment. Such nature of determinism assumes that if an action succeeds, it will transition

the environment into one particular expected state. However, there often exists an explicit model

of probabilistic state transition in physical applications. For instance, when a dice is thrown, it

is obvious that there is an equal chance of getting any number from 1 to 6. Therefore, it is also

necessary for an agent to consider the effect of actions in the world state stochastically. However,

the BDI model is not natively based on a stochastic description of the environment. In order to

incorporate the type of probabilistic planning in BDI agents, therefore, it not only requires a

careful examination of difference and similarities between these two, but also needs significant
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work on modelling and reasoning uncertainty in the BDI paradigms beforehand.

Fortunately, to alleviate some of these issues, some promising works have been proposed in

recent years. One of the first works is the work of [SWP02] which examines the relationship

between BDI framework and one probabilistic planning technique, namely Partially Observable

Markov Decision Processes (POMDPs), to conjoin the theoretical rigor of the POMDPs and the

practical utility of BDI frameworks. To achieve such an objective, their focus is to verify the

existence of mapping between BDI models and the counterpart POMDPs. While some of the

components of POMDPs and BDI are trivially equivalent (e.g. states and actions), some mappings

between components are somewhat convoluted. For the trivial equivalence, it is assumed that

the BDI agents operate in an environment whose state transition function is explicitly known to

build the state transition correspondence between these two. The key mapping is one between

the desire and intention on the BDI side, and the reward on the POMDPs side. To establish

such a mapping, they relate desires to rewards, and intentions to a combination of rewards

and actions. In detail, the authors assume the desires to be a set of states on the BDI side, and

distil the rewards on the POMDPs side in a way that they are defined only over states to build

correspondence between rewards and desires. Meanwhile, they identify the concept of intentions

in BDI framework with the rewards and actions in POMDPs. In detail, an intention is a stack of

partially instantiated plans, which specify a sequence of actions to fulfil some desire of the agent.

Therefore, there are both the action and desire aspects to intentions on the BDI side, which

correspond to the actions and the rewards on the POMDPs side. Finally, using these equivalence,

they provide preliminary empirical evidence that there is a trade-off between the optimality from

a POMDPs problem versus the practicality by the domain knowledge encoded in BDI systems.

Later on, the work of [SP06] extends the work of [SWP02] by providing both theoretical and

related algorithmic mapping between Markov Decision Processes (MDPs) and BDI framework.

Similar to the work of [SWP02], they also assume extra information for BDI agents, e.g. the

transition function is known. Unlike the work of [SWP02], their focus is to show how to map

intentions in BDI architectures to policies in an MDPs and vice-versa, provided they work on

the same state-space. To do so, they use the term “intention” to denote a state that an agent has

committed to bringing about, and use the term “intention plan” or “ i-plan” to denote a sequence

of actions built to reach a specific intention. Such i-plans are employed to correspond to a subset

of pre-defined plans which consists of only actions. Regarding the conversion from the MDPs to

BDI, the authors provide the pseudocode which maps policies into intentions. Intuitively, such a

conversion collects all finite paths of a MDPs policy from a starting state to an ending state in

general cases. The ending state is used as the head of a plan in BDI, whereas the starting state

for this path is the context condition of the plan. And the sequence of actions in each path creates

a body for such a plan. Converting a BDI agent to an MDPs, however, uses a set of i-plans to

assign rewards to states in order to provide a policy for the underlying MDPs that will mimic the

behaviour of an agent with the given i-plans. For an individual i-plan, it assigns a value to each
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state-action pair related to this i-plan in such a way it reflects the gradient of increasing reward

toward completion in each i-plan. Converting an entire plan library involves iterating over all

plans. Finally, once the reward function is obtained, the resulting MDPs can be solved using the

existing algorithm.

While both of the work of [SWP02] and [SP06] have successfully made progress of provid-

ing the useful insight of the relations between BDI and probabilistic planning, namely MDPs,

the problem of actual integration of these two remains unaddressed. To this end, the authors

of [BMH+16] proposes a pragmatic approach, called AgentSpeak+, which integrates the proba-

bilistic planning into the classical AgentSpeak agents. In this framework, they introduce the

concept of epistemic states [ML11], which contains both the current uncertainty information and

POMDPs. In particular, POMDPs embedded into such epistemic states is used to represent the

domain knowledge about the partially observable environment and the uncertain effects of its

actions. In order to call the POMDPs on-demand, a new action in AgentSpeak, namely ProbPlan,

is introduced to be used in normal AgentSpeak plans to explicitly compute the optimal action to

achieve a goal for a given epistemic state. Thus, it enables the agent to resorts to probabilistic

planning to deal with the crucial part of its execution when needed, e.g. when the stake is high.

Notably, this work also follows the idea of the hybrid plan in, e.g. [SSP09] by allowing POMDPs

to contain both primitive actions and abstract actions (i.e. the summarisation of goals in the plan

library). Finally, a prototype implementation of this framework is also developed that extends

Jason [BHW07], which is an open-source implementation of AgentSepak agents.

Following the line of tight integration of POMDPs and BDI agents, the work [RM17] is

proposed to combine the advantage of the online generation of reward-maximising courses of

action from POMDPs and the sophisticated means-end reasoning (e.g. multiple-goal management)

from BDI side. In detail, their key contributions are twofold. Firstly, they introduce the notion of

the intensity of the desire for the achievement of goals, which is a mapping from goals to numbers

representing the level of desire to achieve the goals. Hence, the agent can maintain desire levels

when pursuing multiple goals and when new goals come up. Secondly, it allows the plan library

in BDI part to store recently generated plans and reuse these plans if needed (similar to the

plan reuse strategy in the work of [ML08] in STRIPS planning). Therefore, the agent can take

advantage of the past “experience” – saving time and computation. In their experiments, it is

also shown that the agent could perform actions up to 1.7 times faster (when executing only the

first action of a policy) with an equivalent performance by reusing policies.

Finally, there is a different piece of work [KBM+16], which integrates online planning in

MDPs with BDI agents to handle risk when selecting rational actions to achieve its goals. In

particular, they allow the agent programmers to design agents that can set their risk aversion

levels dynamically based on their changing beliefs about the environment. Their motivation starts

with the recognition that pursuing high utility can often entail high potential costs. Therefore, it

is vital for the agent to balance the trade-off between maximising expected utility (increasing
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utility) and minimising potential costs (lowering risk). To do so, the authors first provide a novel

method for calculating risk alongside utility in online planning algorithms. Secondly, they provide

the decision strategy, guided by a set of principles, to a BDI agent about how to decide between

multiple actions given both utility and risk assessments from an online planner. Finally, they

extend the standard agent configuration to include our risk aversion value and introduce the

derivation rule to change risk aversion value based on beliefs dynamically. Furthermore, their

evaluation demonstrates that raising the risk aversion level of an agent will indeed cause it to

take less risky actions. As such, it has a higher probability of successfully reaching its goal.

3.2 Applying Lookahead Planning to Existing BDI Plans

In Section 3.1, we have discussed different approaches which integrate various planning tech-

niques to generate alternative courses of actions for the achievement of goals in BDI agents. We

now look at another usage of planning, i.e. the so-called lookahead capacity, in BDI agents to

reason about the consequences of choosing one existing plan over another for solving a given

goal. Indeed, the ability to look ahead to guide choices in BDI agents is clearly desirable or even

mandatory to ensure the successful achievement of goals in some situations. For instance, steps

in a plan may not be reversible. It means that the wrong choice of a plan not only consumes

important resource, but also may lead to situations from which the goal can no longer be solved.

Therefore, by reasoning about the consequences of choosing one plan over another, the agent can

guide its execution to avoid detrimental and troublesome situations.

Recall that in Section 3.1.1, we have discussed that the Propice-plan framework [DI99]

provides the planning component to generate new plans when there is no applicable plan

available in the plan library. As a matter of fact, the framework of Propice-plan also provides

some lookahead capabilities to simulate and examine in advance a number of possible options

available to the system ahead of execution. In detail, the lookahead capacity in Propice-plan can (i)

advise the execution of the best option concerning the current state of the world, and (ii) anticipate

some unsatisfied preconditions to come, and try to establish them with an adequate opportunistic

strategy. The simulation is performed through the hierarchical expansion of BDI plans, guided by

subgoals within plan bodies. Such an expansion is done in a similar way that how the initial state

of the world is updated as methods are refined in Hierarchical Task Networks (HTN) planning.

When the lookahead capacity failed the execution simulation of a goal due to some missing

preconditions before the execution reaches this point, this lookahead component can also initiate

an insertion of a proper instantiated plans to establish the missing preconditions.

It did not take long for the researchers in BDI community to recognise the many similarities

between BDI programming languages and HTN planning. The very first work of explicitly

incorporating HTN in BDI agents is the framework called the Cypress system [WMLW95]. In

the Cypress system, the SIPE-2 [Wil90] HTN planning system is augmented with an extended
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version of the PRS agent. This loosely coupled integration of SIPE-2 and PRS is combined with a

new common representation language called ACT. This ACT language contains both the planning

operators of SIPE-2 and the goal-directed reactive procedural rules of PRS agents. Cypress also

includes translators that can automatically map ACT onto SIPE-2 and PRS structures, along

with a translator that can map SIPE-2 operators and plans into ACT. The programmers specify

the domain in the ACT language by default. The domain in ACT language can at runtime be

translated into the language of PRS and SIPE-2 whenever needed. The Cypress system operates

by employing the SIPE-2 to perform the lookahead function on PRS events to a suitable level of

abstraction, which is domain-specific and given by the programmers. When SIPE-2 returns such

an abstract plan, the PRS execution reasoning fills in the remaining details via the standard

BDI decomposition. Therefore, it is argued by the authors that the solution obtained from SIPE-2

can be flexible as they consist of abstract entities whose exact refinements are dealt with by BDI

agents.

While the Cypress framework acknowledges complementary advantages and close similarities

of HTN planning and BDI paradigm, the contrasts and comparison of these two are not conducted

until in the work of [SP04]. This work formally provides a mapping between HTN-based planning

and BDI reasoning. In detail, they formalise that both BDI and HTN systems share a similar

notion of decomposition and flexible composition of parts. The difference of these two, however,

is that the decomposition in BDI is essentially employed for selecting goal-directed actions in a

dynamic environment while the decomposition in HTN systems is to search a legit plan (which

can be successfully executed later). Regarding the mapping, overall, the goal-plan hierarchy

in BDI corresponds to a task network in HTN. In detail, the event goals of BDI are mapped

to the abstract tasks of HTN, whereas the plans of BDI to methods in HTN. The hierarchy

decomposition in BDI (resp. HTN) begins by having an event goal (resp. an abstract task) to be

achieved by (reps. decomposed into) plans (resp. methods). The plan (resp. method) may have

a sub-goal (resp. an abstract task) to achieve (resp. decompose). Therefore, there is a tree-like

hierarchical structure formed in both two systems.

Thanks to the systematic similarity study provided in the work of [SP04], the work of [SP05a]

and [SP05b] quickly follow up and integrate HTN planning in BDI agents. They propose a

framework where BDI agent could use HTN planning in an environment when lookahead

analysis is necessary to provide guaranteed solutions. In particular, BDI agents could use HTN

lookahead to anticipate and avoid branches in the BDI hierarchy that would prevent the agent

from achieving a goal. Unlike the Cypress system in [WMLW95], however, these two works focus

on decomposing a goal entirely up to the level of primitive actions. Thus, the agent can be ensured

whether a goal can have at least one successful decomposition in this way. In addition, while the

Cypress treats the HTN and BDI as equal components under a common language ACT, these

two works instead embed HTN in BDI systems. This implies that BDI agent is in control of HTN

planning. Finally, to ensure a tight coupling between HTN and BDI, the invoking point of HTN
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planning is written in the body of a standard BDI plan, providing the flexibility to the agent. Also,

the program to be run by the HTN is derived from the existing BDI programs (i.e. the limited

subsets of the program) to minimise the programming overhead. And the execution of the plan

returned by HTN is done using the regular BDI execution following the advice from the planner

on what plans to choose.

After the works of [SP05a] and [SP05b], there is also some progress made to provide a formal

semantics of integration of HTN in BDI framework. The works of [SSP06] and [SP11], called

CANPLAN, introduce a new language Plan(P) to CAN semantics, so that Plan(P), where P is

a plan-body program, is intended to mean “plan for P offline, searching for a complete hierar-

chical decomposition”. In this way, the construct Plan in an CAN agent is bound to hierarchical

lookahead planning on how to expand a plan to completion. By looking ahead rather than simply

selecting the first applicable pre-defined plan, potential troublesome execution sequences could

be avoided. The authors of [SSP06] and [SP11] also formally establish the equivalence between

the Plan construct and HTN planning. Therefore, it is proved that the new construct Plan can

indeed serve as an HTN planner in CANPLAN. Finally, there are two noticable complemen-

tary works [BLH+14] and [Sil17] which extend the CANPLAN framework. The work of [Sil17]

develops a formal account of converting HTN hierarchies to obtain BDI goal-plan hierarchies.

Its spirit is in line of converting MDPs policies into BDI plans studied in the work of [SP06].

Therefore, the plan library of a BDI agent can be enlarged from HTN domains. Meanwhile, the

work of [BLH+14] extends the semantics of CANPLAN with actions that have probabilistic effects.

However, while the semantics is sound in [BLH+14], the authors admit that such probabilistic

HTN planning is hard to implement.

Finally, the work of [WBPL06] also attempts to merge BDI agents in Jadex framework and

customised HTN-like planning to lookahead for plans along with a proof of correctness. Like

in most BDI agents, goals in [WBPL06] are also represented as specific world states that the

agent is trying to pursue. However, it significantly deviates from most traditional BDI agents in

that the desires of an agent are represented domain-specific inverse utility functions that can

guide the planning process. For example, the desire of an agent can be to keep the number of

moved blocks low in a blocks-world domain. Also, each goal is assigned a unique function that

reveals an approximate distance from the state to the goals. When given the representation

of the world states, the HTN-like planner in this work takes into account the current goals of

the agents and the functions specified by the desires to refine goals into actions. Planning then

consists of decomposing the stack of goals into executable actions while trying to maximise the

expected utility of the resulting plan using a heuristic based on the distance from the current

state to the goals and the expected utility of these goals. Therefore, the emphasis of this work is

on performance and the better utilisation of domain knowledge in BDI agents when integrating

HTN planning.
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3.3 Plan Selection

In the previous sections, we have mentioned numerous approaches to integrating planning in

BDI agents for different purposes. In this section, we look at the question of what plan should be

selected to achieve a given goal, i.e. plan selection. Recall that an essential feature of BDI agents

is that it has a number of different means through which it can achieve a given goal. Often, the

choice of means to achieve a goal is made by selecting pre-defined plans at run time based on

the triggering event and the current beliefs of the agent. While this feature is handy, it remains

unclear regarding which plan to adopt if several are applicable. In fact, it is often true that

different means are likely to have different characteristics (e.g. cost and preference). Therefore,

there is an intuitive question to ask about how to select the “most appropriate” applicable plan

given the situation. Of course, the definition of being most appropriate is often domain-specific.

Nevertheless, most current BDI languages typically lack the basic underlying representations

for costs, preferences, time, and etc., which are necessary to implement such capabilities. In this

section, we discuss the recent efforts made to build up these representations in BDI frameworks

and how the relevant plan selection strategies work. Before we survey a large body of concrete

plan selection mechanisms in BDI agents in recent years from different aspects, we notice that

there are some aspects of these plan selection capabilities which can be already programmed in

the current BDI agent languages. Most platforms provide some forms of hooks that allow the

agent developers to control which plan is adopted. For example, the plan selection function SO

in [BHW07] is a user-defined function to customise plan selection for a particular application

domain.

3.3.1 Meta-level Reasoning

In this section, we first look at works which approach the problem of plan selection via meta-level

reasoning within the given BDI language itself. One of the first works is the work of [HBHM99]

based on 3APL agents, which addresses the problem of plan selection via a meta-level structure.

To do so, they first distinguish between an object-level which concerns the programming of

agents in the agent language 3APL, and a meta-level which concerns the programming of control

structures for agents. And the meta-level language is defined using transition systems of the

agent in the object level. As such, this approach not only gives the advantages associated with

the modularity of two different systems, but also allows for more freedom in specifying the

various selection mechanisms for the agent. In detail, the control structure for the plan selection

mechanism is based on an intuitive classification and order imposed on these rules. For example,

the failure rule can be selected preferably to recover the failure instead of seeking optimisation.

Later on, the work [DDBDM03] extends the work of [HBHM99] by breaking down the control

structures for agents into individual programming constructs that can be used to select and

apply plans. Therefore, a customised agent deliberation cycle can be programmed in terms of
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these constructs. For example, the meta-statement selrule(tsg, tsr,Vig,Vir) says selecting a rule

and a goal from the set of rules tsr and the set of goals tsg, respectively. Of course, the selected

rule should be applicable to the selected goal, and they are assigned to variables Vig and Vir,

respectively.

There is also another work of [Win05] which presents a meta-interpreter for the AgentSpeak

language to provide easily prototyping extensions or changes to AgentSpeak language itself.

By being a meta-interpreter, it implies an extra layer of interpretation over the underlying

interpreter to extending the language or adding functionality. As such, by having the meta-

interpreter to make the selection of plans explicit, the authors believe that they can override

the provided defaults regardless of whether the implementation provides for this. However,

this work tackles a plan selection problem in a slightly unconventional point of view, namely

multiple solutions for context condition. In detail, the multiple solutions for context condition

means that given a plan in the form of e :ϕ← P, there may be two different ways of satisfying

context condition c which gives different substitution θ1 and θ2 in given the current beliefs of the

agent. Their plan selection supports the inclusion of multiple instances corresponding to different

substitution to the same plan as applicable. However, it still remains silent regarding how to

explicitly select one plan from this expanded set of applicable plans.

There is also a recent work of [LL15] which controls which relevant applicable plan to intend

through the procedural reflection in the agent programming language meta-APL [DYAL14].

Similar to the works of [HBHM99] and [Win05], it also allows both the agent programs and the

deliberation strategy of the agent to be encoded in the same programming language. Therefore,

an agent programmer can not only write standard agent programs, but also customise the

deliberation cycle to control which relevant applicable plans to select by exploiting procedural

reflection. To do so, they introduce the so-called object rules to select an appropriate plan based

on a reason. The syntax of an object rule is in the form of reasons [:context]: P where

both reasons and context are beliefs, and P is a plan. Therefore, selecting a plan requires

not only the context condition to be true, but also the relevant reasons to hold. However, it

remains unaddressed regarding the sophisticated approaches to selection of plans based on

the characteristics of plans, e.g. preference and cost. In the following section, we will discuss

the recent works which handle the plan selection in precedence-based reasoning regarding the

relevant characteristics of plans.

3.3.2 Precedence-based Reasoning

In this section, we have a look at works which select plans based on the precedence of specific

plan characteristics. The work of [DW08] answers the question of how to select between different

applicable plan instances from the aspect of maintenance in BDI agent-oriented software engi-

neering. In a nutshell, their work is motivated to maintain the consistencies of a software system.

Indeed, the system may find inconsistencies in the model when the software is modified due to a
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range of causes, e.g. adding new functionality. For example, when an agent type is added, then

consequently, other agents may need to be modified to communicate with this new agent. To avoid

these inconsistencies, therefore, some secondary changes (also called change propagations) are

needed to meet a changed environment. Building on their previous work [DWP06] applying repair

plans to fix these consistency violations, they provide a cost-based plan selection mechanism of

how to select these repair plans. The key merit of this work is the definition of the cost of plans

which takes into account plan library hierarchy along with a scalable algorithm of cost calculation.

To present an intuitive example of cost calculation, if repair plan P1 involves 7 primitive actions

whereas P2 only needs 3 primitive actions. Then P2 is viewed as cheaper than P1. Therefore,

when there are several applicable repair plans, the agent can select the cheapest plan among

these plans.

There is also another plan selection strategy based on the cost and reward of plans in the work

of [MLH+14]. In this work, they focus on the uncertainty of beliefs of an agent, which leads to the

uncertainty for determining the satisfiability of preconditions of plans. Therefore, the authors

propose a plan selection strategy to choose plans that fulfil the maximum number of goals, the

maximum degree of certainty, and resource-tolerance among the chosen plans. To do so, they first

deal with plan selection to choose the best plan set with the maximum degree of certainty and

achieving the maximum number of goals when no cost or reward information of plans is available.

Then when cost and reward information is attached to plans, they can still choose the best set of

plans that maximise expected profits (reward minus cost) while satisfying the others. Similarly,

a recent work of [DEGL17] also proposed a utility-based plan selection in BDI agents in an

environment with incomplete or uncertain information. To do so, they integrate the probability

and utility into the BDI agents and select the most appropriate plan given all possible plans. In

detail, each plan is assumed to have different known probabilities of successfully achieving the

relevant goal. Then the utility of a plan regarding a state is the weighted average utility of all

possible sub-plans according to their probabilities. Based on the utility of plans, therefore, the

agent can select the plan with the highest utility to maximise the chance of achieving a goal.

Meanwhile, the work of [VTH11] explores the preference-based plan selection strategy in

the BDI agents. To do so, they employ the preference language LPP [BFM06, BM07] to specify

preferences. The preference of this work is expressed in terms of both properties of goals and

resource usage of goals without having to know the details of how the goal is achieved. For

example, the goal of booking a flight may have a property called payment, which specifies the

payment method used. The vaules of this payment property can be, e.g. credit or debit. Any

plan that achieves this flight-booking goal will result in the value being assigned to this property.

In order to specify preferences over plans for a given goal, the preference of possible values for

the related properties are specified instead. Regarding the resource usage of goals, the predicate

minimise(resource) is introduced to express that the usage of the resource should be minimised

whereas the predicate usage(resource,amount,comparator) to express the potential constraint
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of resource usage. When reasoning preferences, unlike the fact that goal properties and their

possible values are precisely known to the agent, the resource usage is dependent on the path

chosen to achieve the goal. Therefore, the resource summaries of goals are obtained using the

techniques from the work of [TP11]. Then an estimation function is introduced when attempting

to satisfy preferences related to resource usage. Finally, since their approach is to express

numerically how well a plan satisfies the preference formulas, they can sort the plans from most

to least preferred and attempt the plans in that order to achieve the goal.

There is also another complementary work on preference-based plan selection proposed in

the work of [PS13]. Typically, in BDI programs, it can be the common practice of assigning

over-constrained context conditions to plans in order to ensure that the most preferred plan will

be selected for use. However, an over-constrained context condition may limit the applicability

of a given plan, e.g. where it could be of value as a back-up plan in other situations. Instead of

overly constraining the context conditions of plans, it proposes an approach that maximises the

applicability of plans while still being able to specify directly in a plan specification, aspects of the

situation which would make the plan more or less desirable. To do so, they assign a quantitative

value to each plan, using a local preference specification which allows dynamic calculation of

this value based on both the current situation and attributes of the particular plan instance.

Unlike the work of [VTH11] adapting another entire preference language for preference-based

plan selection, the approach in [PS13] allows a straightforward declarative specification of the

values of a plan. Furthermore, such declarative specifications at the plan level also make it

straightforward to derive an explanation for a user as to why a particular plan was chosen in a

particular situation.

We have discussed the work of [DW08], which arises from the aspect of software engineering,

namely the maintenance. There is also another work of [TSP12] which proposes a plan selection

based on the coverage from the perspective of software engineering. By the term of coverage for

a plan, it intuitively implies how many world situations such a plan can be applicable in. To

calculate the coverage of a plan, this work recasts the coverage problem as that of the model

counting problem [GSS09]. To be precise, let a plan of a BDI agent be e : ϕ← P. As standard

in the model counting, we can have the model count of the propositional formula ϕ. Therefore,

the coverage of a single plan is the model count of the propositional formula divided by the

number of all possible worlds. In other words, the percentage of the state space in which a plan is

applicable is considered as the coverage of a plan. Furthermore, they also describe the algorithm

for calculating a measure of coverage of a plan considering the underlying goal-plan hierarchies.

Indeed, an apparently high coverage of a plan may be compromised by the lower coverage of

the sub-plans in the underlying tree. To utilise the coverage information for plan selection, it

is intuitive to select a plan with the highest coverage measure to ensure the maximal success

chance.

There is also some work starting from ethical aspects, e.g. moral values. The work of [CWDD17]
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proposes a novel approach to plan selection in which societal, moral, and legal values of users

influence decision-making. By using these values to select plans, the authors claim that a stable

selection mechanism can be achieved because of the common base system of values among

different people. The merit of this work is that it attempts to address the trust in the system by

a human user in that the user can maintain a model of the system and can predict its future

actions based on that model. To model the problem, they take two aspects into account: the goals

and plans of the agent; and the values and their relationship. Regarding the value relationship,

they follow the value hierarchy approach proposed by the work [Poe13]. It links values, norms,

and design requirements or goals through a ‘for the sake of ’ relationship. Similar to how the work

of [VTH11] annotates the plans and goals with preference, this work extends BDI language by

annotating plans with their effects on the value. To make the value-based decisions, they first

take the constraint problem that has been generated from the goal-plan tree. Then plans are

selected using a multi-criteria optimisation via a weighted sum in which each criterion measures

the extent to which a particular value is currently satisfied. By employing an external constraint

solver, it does not require changing the BDI languages or its implementation.

Finally, there is the work of [NL14] which proposes a plan selection mechanism which seeks

the maximisation of some so-called softgoals, e.g. minimise time. Unlike many of the works

we have discussed previously, their focus is to select the best plan by analysing the set of

softgoals [BPG+04]. Each plan may contribute either positively or negatively to a softgoal, and

can be characterised by a set of explicitly pre-defined contributions with a probability to a softgoal.

In addition, similar to the work of [VTH11], there is a preference over the set of softgoals. For

example, an agent may prefer the softgoal of saving money over the other softgoal of minimising

time. However, instead of the strict ordering of preference in [VTH11], this work assigns a

distribution over these softgoals to express the trade-off between different softgoals. The aim

of their plan selection is to maximise the relevant contributions, considering the preferences

over subgoals. To do so, they rely on the multi-attribute utility theory [KR76] to optimise the

satisfaction of softgoals.

3.3.3 Learning-based Reasoning

Thus far, the works we have discussed above tackle the problem of plan selection by either

the precedence of some characteristic (e.g. cost) or meta-level reasoning in the same language.

While these approaches are useful, they are pre-programmed and do not take into account the

experience of the agent. Therefore, the work of [SSPA10] provides an extended BDI framework

that allows the agent to learn and adapt to the context conditions of plans. They argue that

crafting fully correct context condition at design time can be a demanding and error-prone task.

Also, fixed context conditions do not allow agents to adapt to potential variations of different

environments. To address these limitations, they employ decision trees as the context condition

of a plan, rather than original logical formulas. As such, for each plan, its decision tree (induced
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based on previous execution) gives the agent information regarding how likely it is to succeed

or fail in a particular world state. To select plans based on information in the decision tree,

they propose a probabilistic plan selection function. Such a probabilistic plan selection function

will select a most suitable plan according to the likelihood of success of each plan in different

situations along with some measure of confidence in such a decision tree. Later on, they further

extend it in the work of [SSP10] to include variables instead of propositional atoms and the

recursive subgoaling. In doing this, they provide an approximate measure suitable for a recursive

structure to replace the earlier measure of confidence which is based on a finite goal-plan tree.

Another similar work of [FN15] also proposes a plan selection approach to learn plans that

provide possibly best outcomes. Similar to the work of [NL14], the ultimate goal of this work

is also to maximise the agent satisfaction, considering the different side effects to softgoals

and the preferences over these softgoals. However, unlike the work of [NL14], they do not

require the programmers to explicitly provide probabilities of plan outcomes. They argue that the

specification of probabilities of each possible plan outcome is hard to elicit and context-dependent.

Furthermore, this specification may evolve over time. Instead, they require the factors (which can

serve as contexts and are easy to identify) that can influence plan outcomes and the relationship

between these factors and plan outcomes. Then they build a prediction model from the factors to

plan outcomes based on recorded plan executions. To do so, there is initial learning to collect a

sufficient amount of data. During this stage, plans may be selected randomly, for example. After

the sufficient amount of data is obtained, a suitable existing machine learning algorithm can be

applied to predict outcomes of plans. Finally, a function is proposed to transform plan outcomes

into contributions associated with relevant softgoals.

3.4 Intention Selection

In the preceding sections, we have examined the existing works on plan selection in BDI agents.

While useful, its focus is to decide what the best means is to use to achieve a given goal. However,

a BDI agent typically pursues multiple goals in parallel due to its reactive nature (i.e. responding

to new events while already dealing with other events). It means there are more decisions to

be made for managing the concurrent execution of multiple intentions. For example, after the

agent commits to applicable plans to multiple goals, the decision needs to be made about which

intention is the best to execute next. Indeed, it is possible that the interleaving of steps in

different intentions may result in conflicts, e.g. where the execution of a step in one plan makes

the execution of a step in another plan impossible. Also, when an intention is selected to execute

and there is a subgoal to achieve in this intention, the problem of plan selection for this subgoal

may need to take into account other concurrent intentions. Indeed, an applicable plan which

is suitable for one subgoal in one intention may not be compatible with the achievement of the

rest of current intentions. For instance, an applicable plan may consume too much resource,
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thus leaving insufficient resource for the rest of intentions. Unfortunately, most of the previous

existing plan selection mechanisms fail to do so. For instance, the work of [SSPA10] clearly

point out the assumption of the execution of a single intention. Similarly, the authors of the

work [SSP06] also leave for future work accommodating parallel executions of goal and continues

to omit this problem in the late journal version [SP11].

Similar to the support for the plan selection in BDI, the mainstream BDI programming

languages also provide some preliminary operations that allow a developer to control which

intention is scheduled for execution at the current cycle. For example, the intention selection

function SI in Jason [BHW07] allows a developer to customise intention selection function for a

particular application domain. In addition, to avoid the potential conflicts between intentions,

some atomic constructs are also available in languages such as Jason and A Practical Agent

Programming Language (2APL) [Das08] to prevent the interleaving of steps in one intention

from others. However, the hook for the intention selection function has normally required the

programming in another language, e.g. Java. Regarding the non-interleaving atomic constructs,

it may be either too difficult to know which intention should be kept separately from the exe-

cution of other intentions, or simply over-do it, thus missing the potential positive interactions

between intentions. Therefore, a wealth of works have been released to incorporate these missing

capabilities within BDI model in the following sections.

3.4.1 Summarisation-base Reasoning

In this section, we first look at one line of approaches which are based on information summarised

from the goals and plans in the hierarchy of the plan library in BDI agents. One of the first

works [TWPF02] starts from the intuition of potential resource conflicts when pursuing multiple

goals in BDI agents. In general, different ways of accomplishing a goal may use different resources.

Typically, in BDI agents, the plans to be used are chosen at runtime, based on the current context.

As such, we cannot always say in advance precisely how many resources will be needed to achieve

a given goal. To detect if a set of goals can be executed concurrently with no resource conflicts,

the authors derive the possible and necessary resource summary information of relevant goals.

In detail, the possible resource is the resource required by at least one plan of achieving the goal

but not required by all plans, whereas the necessary resource is needed in every way to achieve

a given goal. To simplify the problem, they assume that the agent designers can specify the

necessary resource requirement for a plan via annotations. This necessary resource annotation

for a plan essentially captures the necessary resource requirements for the actions in that plan.

Based on the concrete necessary resource annotations for each plan, a handful of operators are

introduced to compute the resource summaries goals according to the hierarchy of the plan library.

Then the resource conflict reasoning can tell the feasibility of accomplishing all of the goals given

the resources available. It also indicates when careful scheduling (e.g. reuse the resources) is

necessary to ensure the achievement of all goals. In particular, it is useful to an agent when
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deciding whether it can adopt a new goal or not with such resource conflict reasoning.

Similarly, there is also another work of [TPW03a] detecting and avoiding interference between

a set of goals in BDI agents. Unlike the focus of potential resource conflict in [TWPF02], it

concentrates on a particular type of negative interactions where the effects of one goal undo

conditions that must be protected for successful completion of another goal. To do so, they obtain

summary information about the definite and potential conditional requirements and effects of

goals and their associated plans. Like the concept of necessary and possible resource in [TWPF02],

a definite condition is a condition that will definitely be required at some point by every plan

to achieve a given goal, whereas a potential condition required by at least one plan but not

all. To facilitate the reasoning of interaction between goals, they also introduce the so-called

preparatory effects and dependency links. To illustrate, if a plan P1 brings about an effects φ

which is the precondition of the following plan P2, then there is a dependency link between

the preparatory effect φ and the dependent plan P2. With such information, their approach

protects these dependency links to ensure the applicability of the dependent plans. They also

want to protect the in-condition of a goal or a plan with the information of definite and potential

in-conditions for goals and plans. Having calculated relevant summaries, they discuss ways of

determining whether goals will definitely not interfere with each other and how to avoid potential

interference via scheduling if possible.

Meanwhile, there is some work which is looking at exploiting positive interactions when

pursuing a set of goals in parallel in BDI agents. For example, the work of [TPW03b] looks at the

situations where there is potentially a common subgoal of multiple goals. To exploit this type

of positive interaction, they propose a mechanism for identifying potential common subgoals

and facilitating plan merging. Their approach is also based on their previous summarisation-

based work [TPW03a]. In detail, the potential common subgoals are identified when maintaining

summaries of definite and potential effects of goals and plans. The underlying motivation is

that plans of different goals that can bring about the same effect could possibly be merged (i.e.

executed one for all). To identify and facilitate plan merging, they store and monitor plans which

could definitely and possibly be merged regarding the pursuit of the current goals.

3.4.2 External Tool-based Reasoning

Some researchers employ external tools to help the agent to pursue multiple intentions in parallel.

To begin with, there is the work [BBJ+02] which employs a decision-theoretic task scheduler,

called the Design-To-Criteria (DTC) scheduler, to automatically generate efficient intention selec-

tion functions for BDI agents. To do so, they first use a representation language called the TÆMS

(Task Analysis, Environment Modelling, and Simulation) to represent the coordination aspects

of intentions formally. Such a representation framework significantly improved the expressive-

ness of the language, thus facilitating the programming of certain types of application where

quantitative reasoning is necessary. To be precise, not only does TÆMS provide quantitative

55



CHAPTER 3. LITERATURE REVIEW

characteristics to tasks such as quality, cost, and duration, but also includes task relationships,

e.g. enables, facilitates, and hinders. Furthermore, given the equivalence between methods (resp.

tasks) and plans (resp. goals), they can obtain a TÆMS task structure library corresponding to

the plan library in a BDI agent. Then for a given TÆMS task structure, the task scheduler DTC

can produce alternative sequences in which an agent should execute the methods in that task

structures to best satisfy the criteria (e.g. duration) and deadlines specified in the task structure.

There also exists a line of works which employ a stochastic approach, e.g. Monte-Carlo Tree

Search (MCTS) [BPW+12] to scheduling intentions. For example, the work of [YLT14] proposes

an approach to intention scheduling for BDI agents based on single-player MCTS that avoids

conflicts between intentions. To do so, the input of single-player MCTS algorithm is a set of

goal-plan trees representing the current set of intentions along with the current beliefs. And

the output of the scheduling algorithm is the next step of one goal-plan tree to be executed at

the current deliberation cycle. During each iteration of the MCTS algorithm, it consists of four

phases, namely selection, expansion, simulation, and back-propagation, to guide the expansion

of the search tree. Also, the node of the search tree records the previous and current steps in

each goal-plan tree, the current environment, and some statistics (e.g. the number of times it has

been visited). To demonstrate the performance of their approach, it compares its performance

to that of summary information intention selection technique in the work of [TPW03a]. The

experiment suggests that their stochastic approach is at least no worst than schedule using

summary information.

Later on, there is another work of [YL16] which extends the work of [YLT14] in the following

threefolds. First, not only does it avoid conflicts but also maximise fairness in the progression of

the intentions in [YL16]. Secondly, it also allows the interleaving of primitive actions in different

intentions. Thus, it differs from the work of, e.g. [TPW03a] and [YLT14], which only interleave

intention at the plan level. Thirdly, a comprehensive evaluation is conducted to compare the

performance of their stochastic approach to that of round-robin, non-interleaving, summary

information-based, and coverage-based in both synthetic domain and realistic domain and both

static and dynamic environments. The experimental results show their approach outperforms

the rest of intention selection mechanisms regarding both the number of goal achieved and the

variances in the goal achievement time.

Finally, it is worth mentioning there are two extended works, namely [YLT16a] and [YLT16b]

based on the work of [YL16]. The work of [YLT16a] takes into account the deadlines of intentions

with a straightforward extension to stochastic scheduling in [YLT16a]. Meanwhile, the work of

[YLT16b] employs the stochastic scheduling in [YL16] to exploit the synergies between intentions.

Instead of backtracking to recover from an execution failure, they propose an approach to

appropriate scheduling the remaining progressable intentions to execute an already intended

action which (hopefully) re-establishes a missing precondition. Also, they assume actions with

stochastic effects to respond to a more realistic environment. To be precise, the intended outcome
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of an action may or may not establish a precondition of a subsequent action in the plan. Their

experiments show that their approach can avoid negative interactions between intention (as

in [YL16]), while exploiting positive interactions to recover from execution failures.

3.4.3 Plan Selection Extended

Recall that we have discussed the work of [LL15] in Section 3.3.1 for plan selection through the

procedural reflection. As a matter of fact, it also provides the support and freedom to the agent

developers to customise the deliberation cycle to control which intentions to execute. The core idea

to add to BDI language the ability to query the plan state (i.e. a collection of plan instances and

their properties), and the actions which can manipulate the plan state. The large portion of their

work is to provide a precise, declarative operational semantics for customised deliberation strategy

which does not rely on user-specific functions. For example, the operation scheduled(i) specifies

that a step of the plan instance with the ID i will be executed at the current deliberation cycle. To

show the feasibility of their language, they replicate some typical of deliberation strategies found

in the literature. For example, the meta-level rule executable-intention(i)→schedule(i)

serves as the core rule to re-enable the previously progressed intention for execution again at the

current cycle, provided it is still executable. Finally, an adaptive deliberation strategy is provided

to avoid the conflicts between intentions while balancing the fairness of intention progression.

In the work of [TSP12], intention selection is also addressed along with the plan selection

based on the notion of both coverage and overlap of plans and goals. The intuition of their work is

that if there is a number of intentions waiting for selection to progress, the intention which has

fewest possible successful execution (i.e. low coverage) is preferred for selection. In other words,

the most vulnerable intention is prioritised for selection in case that the change of environment

after selecting other intentions no longer enables it to be successfully achieved. Also, if there are

more than two intentions with the same coverage, then the intention with the smallest overlap

measure will be prioritised. Unlike the coverage, which measures how likely an intention will

succeed regarding the environment, the concept of overlap measure quantifies how easy it can be

recovered. As such, the agent can ensure that the most vulnerable and least recoverable intention

will be selected preferably to ensure its successful execution.

Later on, the coverage-based intention selection is evaluated in the work of [WPS14]. To do

so, they compare the coverage-based intention selection mechanism with the other two common

intention selection mechanisms, namely round-robin and non-interleaved. Recall that the round-

robin type of intention selection does a fixed number of steps on each intention in turn, whereas

the non-interleaved processes each intention to completion in the order received. It is empirically

shown that the coverage-based technique performs better under all circumstances, in particular

in volatile environments where the plan library contains significant gaps regarding the coverage.

Inspired by the nature of the coverage-based techniques, they also find out that the simple use of

progressability checking when making intention selection amounts to a substantial improvement
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in the number of successfully completed intentions. This is a substantial finding because this

check can be readily applied to any other existing intention selection mechanisms. For example, it

can enhance the round-robin with the progressability checking by selecting the first progressable

intention and progress it until it becomes unprogressable and keeping the rest unchanged. Also,

the experiments indeed show that the progressability checking enabled round-robin intention

selection performs better than the plain round-robin.

3.4.4 Others

Finally, we notice that there are also some theoretical or architectural frameworks for deciding

how goals interact and how an agent decides which goals to pursue. For example, the work

of [PBL05] proposes a goal deliberation strategy, called Easy Deliberation, to allow the agent

developers to specify the relationships between goals in an easy and intuitive manner in BDI

agents. Similar to previous works on intentions, they also recognise that the goals of the agent

can interact positively or negatively with each other. However, their contribution is to provide

a suitable mechanism for handling goal relationships at the architectural level. Hence, the

management of concurrent pursuit of goals can be left to the agent developers at the design

phase. In achieving so, they begin with adopting an explicit representation of goals as described

in [BPML04] which consists of a generic goal lifecycle and forms the basis for different goal

types (such as achievement) in a different state (such as suspended). According to both the

methodology Tropos [BPG+04] and the engineering technique requirements KASO [LVL02], their

strategy operates by the following two characteristics. Firstly, they identify the influence factors

that drive the goal deliberation, namely cardinalities and inhibition arcs. The cardinalities tell

the maximum number of active goals of a specific type, whereas the inhibition arcs specify

the negative relationships between goals. Secondly, the deliberation process is initiated on two

demands, namely when new goals are adopted or deactivated, and when goals are deactivated.

The former case needs to decide if new goals can be activated and what are the implication to the

current active goals. And the latter needs to decide the implication caused by the deactivated goal

(e.g. some other goals inhibited by it). Despite the usefulness of this approach, the consideration

of the conflicts is restricted to the goal level, and does not take into account the plans used to

achieve the goals.

Similarly, the work of [ZRB16] also addresses the conflicting issue when the agent pursues

multiple intentions in BDI agents. Arguably, their work extends the feature of atomic constructs

which disallows the intentions interleaving in Jason agents. The key part of their approach is

that the detection of conflicts is performed based on explicitly informing the conflicting plans in

the agents. In other words, the developer is responsible for explicitly specifying the conflicts. In

achieving so, they provide a detailed and expressive conflicting specification when writing agent

programs. For example, the agent developer can inform the set of plans that conflict, e.g. conflict

set {P1,P2,P3}. To avoid the conflict at runtime, if a plan is already being executed, then only
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plans that do not conflict with this plan can be instantiated and executed concurrently. Unlike any

other work which adds the additional intention reasoning capacity, the authors believe that this

approach has a high computational performance. In fact, their approach can be easily integrated

into the existing BDI agent platforms, e.g. Jason, with two simple modifications. The first one is a

simple annotation called conflict. And the second one is to add a further condition of checking

no conflict plan currently executed before actually executing a plan.

3.5 Summary

We now close the section of the literature review with the following three tables. Firstly, Table 3.1

shows a detailed summary of all works on including planning in the BDI frameworks. Overall, it

can be concluded that the planning seems well suited to be conjoined with BDI agents. A wide

range of concrete planning techniques has been integrated into various BDI agent paradigms.

HTN-like planning appears to be employed exclusively for the purpose of looking ahead on

existing BDI plans according to Table 3.1. Meanwhile, various forms of FPP are integrated into

BDI agents to create new plans when a path pursued via standard BDI execution turns out not

to work. Furthermore, the community has also started to realise the importance of reusing plans

from the planning tools when similar goals need to be achieved. It can be seen that the efforts of

improving domain knowledge via the planning have started from both HTN side and FPP side

(e.g. STRIPS). From the FPP side, the work of [ML07] leverages new plans from STRIPS-like

planners whereas the work of [SP06] provides practical algorithms of converting MDPs policies

into BDI rules. From the HTN side, the recent work of [Sil17] develops a formal account of

coverting HTN hierarchies to obtain BDI goal-plan hierarchies.

Secondly, Table 3.2 shows a detailed summary of all plan selection works discussed in this

chapter. Clearly, a large portion of works starts from some fixed characteristics of plans (e.g.

cost). Based on these characteristics of plans, a suitable quantitative reasoning framework

can be introduced. Also, the level of modification to the existing BDI languages also leads to

different styles of approaches. For example, both works [VTH11, PS13] starts from the point of

preference for plan selection. While [VTH11] adopts another expressive preference language to

do so, [PS13] introduces a simple extension to the specification of the plans. Thus, there exists a

natural correlation between the expressiveness of the plan selection extension and the level of

modification to the BDI agents. Furthermore, to make the plan selection viable, either certain

information is assumed (e.g. via annotation), or addition reasoning capacity is introduced to get

the relevant information. For instance, the work of [TSP12] provides how to calculate the coverage

and overlap of plans, whereas the work of [CWDD17] simple annotates the value changes to the

plans.

Thirdly, Table 3.3 shows a detailed summary of intention selection works discussed in this

chapter. Indeed, the intention selection is difficult as it needs to decide not only what set of
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means to which it commits at any time, but also the way those means are progressed, given the

goals of the agent and the plans it has to achieve them. A clear consensus from these works

in Table 3.3 is that the intention selection at least needs to ensure the successful achievement of

all current given goals. Therefore, a large number of works address how to avoid the potential

adverse interactions between multiple intentions, e.g. in [TWPF02, TPW03a, ZRB16] and the

whole line of applying MCTS method. Arguably, the difference between these approaches is

in their degree of encapsulation. To illustrate, the work of [YL16] encapsulate all scheduling

decisions (including which plan to select, which intention to progress) in a single MCTS process.

Meanwhile, the approaches based on summary information functions as “a standing advisor"

to determine whether the adaptation of a new goal would conflict with other existing goals

in [TWPF02]. However, it is still up to the agent to decide whether to adopt a new goal or not.

Table 3.1: Summary of the works of incorporating planning in BDI discussed in this chapter

Problem Type Approach Reference

Planning to Generate

New BDI Plans

STRIPS

Planning

[DI99] PRS, abstract plan

[SSP09] CAN, hybrid plan

[ML07, ML08]
AgentSpeak, abstract plan,

and plan reuse

[MZM04] X-BDI, non-abstract plan

Probabilistic

Planning

[SWP02] POMDPs versus BDI

[SP06] MDPs versus BDI

[BMH+16]
POMDPs, AgentSpeak,

and hybrid plan

[RM17] POMDPs, Plan Reuse

[KBM+16] MDPs, risk-aware planning

Applying Lookahead Planning

to Existing BDI Plans
HTN Planning

[DI99] HTN-like simulation

[WMLW95] HTN+ PRS in ACT language

[SP04] HTN versus BDI

[SP05a, SP05b] HTN in CAN

[SSP06, SP11] CANPLAN

[BLH+14] CANPLAN, Uncertainty

[Sil17] Plan reuse from HTN to BDI

[WBPL06] HTN in Jadex
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Table 3.2: Summary of the works of plan selection in BDI discussed in this chapter

Plan Selection

Type Feature Approach Reference

Meta-level

Reasoning

[HBHM99]

[DDBDM03]
3APL, meta-level language

[Win05] AgentSpeak, meta-interpreter

[LL15] 3APL, meta-APL

Precedence-based

Reasoning

Cost [DW08] Maintainance, repair plan

Cost, Reward [MLH+14] Uncertain beliefs

Utility [DEGL17]
Plans with known utility

and success probability

Preference
[VTH11] Employ other preference language

[PS13] Extending plan specifications

Coverage [TSP12] Model counting problems

Moral value [CWDD17] Trust, constrain problems,

Softgoals [NL14] Multi-attribute utility optimisation

Learning-based

Reasoning

[SSPA10, SSP10] Decision tree instead of logical formulas

[FN15]
Extension of [NL14]

with prediction for plan outcomes

Default Function [BHW07] Required another language (e.g. Java)
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Table 3.3: Summary of the works of intention selection in BDI discussed in this chapter

Intention Selection

Type Feature Approach Reference

Summarisarion-based

Reasoning

Resource

conflict
[TWPF02]

Possible and necessary

resource summary

Interference [TPW03a]
Definite and potential

conditional requirements

Positive

interactions
[TPW03b] Plan merging

External Tool-based

Reasoning

Task scheduler [BBJ+02] DTC, TÆMS

MCTS

[YLT14] Plan level intention interleaving

[YL16]
Action level intention interleaving,

stochastic effects

[YLT16a] Deadline

[YLT16b] Failure recovery

Plan Selection

Extended

Meta-level [LL15] Plan manipulation

Precedence-base
[TSP12] Coverage and overlap

[WPS14] Progressability check

Other
[PBL05] Goal-level deliberation

[ZRB16] Conflict specifications

Default Function [BHW07] Require another language, e.g. Java
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4
RECOVERING AGENT PROGRAM FAILURE VIA PLANNING

The bulk of this chapter has been published online in [XBML18a].

4.1 Introduction

The Belief-Desire-Intention (BDI) agent systems, where the agents are modelled based on their

beliefs, desires, and intentions, provides a practical approach to developing intelligent agent

systems. Typical BDI agents rely on user-provided plan library (i.e. a set of plan rules) to

achieve goals, and online context-sensitive plan selection and goal expansion. These allow for

the development of systems that are incredibly flexible and responsive to the environment. As a

result, the agents modelled in BDI style are well suited in complex application domains, such as

control systems [JB03] and power engineering [MDC+07]. While the use of a set of pre-defined

plans simplifies the planning problem to an easier plan selection problem, obtaining a plan

library that can cope with every possible eventuality requires adequate plan knowledge. This

knowledge is not always available, particularly when dealing with uncertainty. Therefore, this

limits the autonomy and robustness of BDI agent systems, often with deleterious effects on the

performance of the agent when there is no applicable plan for achieving a goal at hand.

To illustrate the problem, consider the following running example (see Figure 4.1). In a smart

home environment, there is an intelligent domestic robot whose job includes daily household

chores (e.g. sweeping), security monitoring (e.g. burglary), and entertainment (e.g. playing music).

The environment is dynamic and pervaded by uncertainty. When the robot does chores in the

lounge, it may not be pre-encoded with plans to deal with an overturned clothes rack in the

lounge, one of the doors to the hall being blocked unexpectedly, or urgent water overflow in a

bathroom. Indeed, it is unreasonable to expect an agent designer to foresee all exogenous events

and provide suitable pre-defined plans for all such eventualities. To address this weakness, the
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Figure 4.1: Layout of a Smart House with a Domestic Robot

desirable behaviours of such a robot agent should be able to come up with new plans to deal with

such unforeseen events at design time in order to act intelligently.

Fortunately, to alleviate (some of) these issues, a large body of work on integrating various

planning techniques with BDI agents have been proposed in recent years, as reviewed in Sec-

tion 3.1. For example, the work of [ML07] proposed integration of AgentSpeak and a classical

First-principles Planning (FPP) in which a new planning action in AgentSpeak is introduced to

incorporate this planner. This action is bound to an implementation of a planning component, and

takes as an argument the desired world state along with the plan library and the current belief

base to generate a new plan. The BDI agent designer may include this new planning action at any

point within a standard AgentSpeak plan to call a planner. In the work of [SSP09], the authors

provide a formal framework for FPP in BDI agent systems. This framework employs FPP to gener-

ate abstract plans, that is, plans that include not only primitive actions, but also abstract actions

summarised from the plan library. It allows for flexibility and robustness during the execution of

these abstract plans. However, most of the existing approaches (e.g. [ML07, SSP09, BMH+16])

which are reviewed in Section 3.1 integrate with FPP requiring the agent designer to define when

the FPP is triggered. These ad-hoc styles of approaches limit the power of FPP to assist BDI agent

systems to accomplish their goals as the points of calling FPP effectively can be unpredictable.

Therefore, the goal of the contributions in this chapter is to advance the state-of-art of planning

in BDI agents by developing a rich and detailed specification of the appropriate operational

behaviour when FPP is pursued, succeeded or failed, suspended, or resumed. To achieve so,

we introduce a novel operational semantics for embedding FPP in BDI agent systems. This

semantics specifies when and how FPP can be called, and precisely articulates how a BDI agent

system manages the FPP. Such a semantic approach of ours also responds to the lack of work in
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strengthening the theoretical foundations of the BDI agent pointed out by the comprehensive

survey [MS15] as one of the future directions for planning in BDI agents.

In this chapter we present a systematic study of the tight integration of FPP within a typical

BDI agent programming language, namely Conceptual Agent Notation (CAN). The structure

of this chapter is as follows. In Section 4.2, we introduce when the FPP can be utilised in

CAN framework in an intrinsic manner. Specifically, we semantically enumerate all potential

execution failure which the FPP can generate new plans to recover. Contradictory to the restricted

approaches in the works (e.g. [ML07]) which requires the agent developers to specify when to

trigger the FPP, our approach makes CAN agents self-aware of when they should call for help

from FPP. It not only reduces the responsibilities of agent designers, but also, more importantly,

ensures the maximal appropriate usage of FPP when needed. In Section 4.3, we then provide the

strategy to recover these execution failures previously enumerated by calling FPP. To achieve

so, we extend the intentions of BDI agents with declarative intentions and denote the original

intentions as procedural intentions. This partition of the intention set in CAN agents allows

fine-grained management where procedural intentions manage the existing agent programs

telling how to achieve a goal, while declarative intentions instruct the embedded FPP what

to achieve. In detail, we address how to recover all execution failure by adding the relevant

declarative intentions for FPP to plan for with precise derivation rules. In Section 4.4, we discuss

how the agent manages the declarative intentions and how the CAN agent executes the plan

generated from FPP. The formal relationship between FPP and the CAN agent execution is

established in Section 4.5. Finally, in Section 4.6, we offer an intricate scenario discussion, which

supports the feasibility of the resulting framework and motivates the merits of the proposed

framework to warrant future work on a fully implemented system.

4.2 Execution Failure in BDI

We now discuss how CAN agent systems and FPP can be integrated into a single framework. The

resulting framework, called CAN(FPP), allows us to define agents that can perform FPP to provide

new behaviours at runtime in an uncertain environment. We start by semantically enumerating

the potential execution failure, namely the procedural execution failure and declarative execution

failure in CAN agents in the basic configuration (i.e. how to evolve a single intention).

4.2.1 Procedural Execution Failure

We begin with the procedural execution failure which specifies the potential failure of all agent

programs but not the declarative goal program goal(ϕs,P,ϕ f ). We have two potential types of

procedural execution failure, namely the coverage failure and precondition failure.

The coverage failure captures the type of failure when there is no applicable plan for the

current (sub)goal. To be precise, all relevant plans are selected, i.e. ∆= {ϕθ : Pθ | (e′ =ϕ← P) ∈
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Π∧θ = mgu(e′, e)} to deal with an event goal e. However, there may not exist a relevant plan

ϕθ : Pθ such that its context condition holds for the current belief base, (i.e. @ ϕθ : Pθ ∈∆ such

that B |=ϕθ). In this case, we say that a coverage failure occurs as there does not exist some plan

that is applicable for every situation. Therefore, we can have the following derivation rule to

capture this coverage execution failure where ?false is a failed program and the label cov stands

for coverage.

∆= {ϕθ : Pθ | (e′ =ϕ← P) ∈Π∧θ =mgu(e′, e)} @ ϕθ : Pθ ∈∆ B |=ϕθ
〈B,A, e : (|∆ |)〉 cov−−→〈B,A,?false〉

Fcov

The precondition failure captures the type of failure when a precondition of an action does

not hold before being executed. This type of execution failure can happen, e.g. due to the dynamic

nature of the environment. For instance, before a robot proceeding passing through a door (i.e.

action gothrough(door1)), the door was slam shut by, e.g. the pet. The following derivation rule

is given to capture the coverage execution failure where the label pre stands for precondition.

a :ψ←φ−;φ+ ∈Λ aθ = act B 2ψθ
〈B,A,act〉 pre−−→〈B,A,?false〉

Fpre

4.2.2 Declarative Execution Failure

We have discussed the types of procedural execution failure in which the agent programs that

describe how to achieve a given goal get blocked due to various reasons. We are now ready to

have a look at the other type of failure, namely the declarative execution failure, which focuses

on the special declarative goal program goal(ϕs,P,ϕ f ). Recall that a declarative goal program

goal(ϕs,P,ϕ f ) states that the success condition ϕs should be achieved through the procedural

program P, failing when ϕ f becomes true, and retrying (alternatives) as long as neither ϕs nor ϕ f

is true (see [SP07]). We can see that the declarative goal amounts to a unique behaviour nature

which is different from the normal procedural programs. Unlike the procedural program in which

it is deemed successful if it has been executed successfully, the ultimate aim of a declarative

goal is to achieve the success condition in it regardless of the execution state of the related

procedural program. In the following, we focus on two types of declarative execution failure,

namely procedural component failure and empty procedure failure.

The procedural component failure refers to the type of failure when the procedural compo-

nent P which is used to achieve the successful state in a declarative goal program goal(ϕs,P,ϕ f )

can no longer progress (i.e. blocked). For example, the reason of procedural component P in

goal(ϕs,P,ϕ f ) being blocked may be due to the coverage failure discussed in the procedural

execution failure in Section 4.2.1. At first glance, it is tempting here to classify these situations

into the procedural execution failure in Section 4.2.1. On closer inspection, unlike the procedural

programs whose failure is inability to execute themselves in full, the purpose P in goal(ϕs,P,ϕ f )

is to achieve the success condition ϕs rather than focusing on its own accomplishment. Therefore,
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we assign them to the different type of failure, i.e. procedural component failure for a declarative

goal program.

The following derivation rule captures the type of procedural component failure where the

label fail denotes the failure of the procedural component (i.e. 〈B,A,P〉9) in a declarative goal.

B 2 (ϕs ∨ϕ f ) 〈B,A,P〉9
〈B,A, goal(ϕs,P,ϕ f )〉 fail−−→〈B,A,?false〉

Ffail

The empty procedure failure is the type of failure in which there is no procedural program

given to achieve a declarative goal. In other words, a declarative goal program goal(ϕs,nil,ϕf ) is

initially written as a part of the plan-body program where P = nil is syntactic sugar representing

that there is no available procedural information on how to achieve the goal. Indeed, such a

scenario can occur when either the procedural program was not known during the design time,

or there are no efforts made to create pre-defined plans (e.g. due to the priority of other parts

of plan library design tasks). Once the Belief-Desire-Intention (BDI) agent encounters such a

declarative goal goal(ϕs,empty,ϕf ), it will return a failure, giving us:

B 2 (ϕs ∨ϕ f )

〈B,A, goal(ϕs,nil,ϕ f )〉 empty−−−−→〈B,A,?false〉
Fempty

where the label empty stands for the empty procedural condition in the declarative goal.

4.3 Declarative Intentions in BDI

We have discussed and differentiated the distinct types of execution failure in BDI agents, which

can potentially be recovered by First-principles Planning (FPP). In this section, we introduce

the concept of declarative intentions (used by FPP) and its semantical operations regarding how

to recover various types of execution failure. In a Conceptual Agent Notation (CAN) agent, the

intention set Γ is limited to just procedural intentions. While valuable, procedural intentions

only describe how to achieve a given goal and do not answer the question as to which goals

FPP should be trying to achieve in the BDI agent. To address this shortcoming, we partition the

intention set Γ in this work into two sets, namely procedural intention set Γpr and declarative

intention set Γde such that Γ=Γpr∪Γde and Γpr∩Γde =;. This straightforward extension allows

us to keep track of both procedural intentions (executed by the BDI engine) and declarative

intentions that tells us what we want to achieve (used by FPP). Each set of intentions Γi is

furthermore partitioned into the subset of active intentions Γ+
i and the suspended intentions

Γ−
i where i ∈ {pr,de}. The key advantage of this detailed description of intention states is to

provide a middle layer state, namely the suspended, to the intentions. Therefore, the agent can

temporarily suspend its intentions before making decisions of whether it should permanently

drop them or recover them before resuming. We also assume adding an element to Γ+
i ensures

the element is removed from Γ−
i and vice versa where i ∈ {pr,de}.
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To define the elements in the declarative intentions, we introduce the concept of pure declar-

ative goals. A pure declarative goal goal(ϕs,ϕf ) is obtained from the ordinary declarative goal

goal(ϕs,P,ϕf ) in BDI agents by dropping the procedural component P. It is read as “achieve ϕs;

failing if ϕf becomes true”. This new goal structure encodes the minimum information of what

FPP needs to achieve (i.e. successful condition ϕs) and when it is sensible to halt FPP (i.e. failure

condition ϕ f ). To avoid confusion, we note that the special normal declarative goal goal(ϕs,nil,ϕf )

conceptually encodes the same information as the pure declarative goal goal(ϕs,ϕf ) due to that

nil is an empty procedure. However, these two have profoundly different semantical behaviours,

namely one executed by BDI engine and the other used by FPP. In the following, we will present

the derivation rules in the agent configuration (i.e. how to execute a complete agent) to recover

the relevant execution failure previously enumerated in Section 4.2. To do so, we will show how

to obtain and add appropriate pure declarative goals based on other types of agent programs into

declarative intentions (achieved by FPP) for each type of execution failure.

4.3.1 Procedural Execution Failure Recovery

We now consider the recovery strategies which add the appropriate pure declarative goals for the

type of procedural execution failure presented in Section 4.2.1.

The first recovery strategy is to recover the coverage failure in which there is no applicable

plan to achieve a given goal. In BDI agents, when no plan is available, then the goal is deemed

failed (and potentially dropped by the agent). However, as one of the properties of goals held

by a rational agent is that they should persist [WPHT02], it is rational to retry and pursue

these goals if possible. To obtain such persistence, some BDI agent may temporarily suspend

this goal and wait until one of the relevant plans becomes applicable somehow. Similarly, we

also first temporarily suspend all relevant plans of a given goal in our approach. Unlike the

passively waiting approach to maintaining the persistence of goals, however, we proactively make

the relevant plan applicable by adding a pure declarative goal whose success condition is the

precondition of one of the relevant plans into the declarative intention. In other words, we want

FPP to establish the precondition of one of the relevant plans to ensure the continuing pursuit

of the given goal. For simplicity, the failure condition in the newly added pure declarative goal

can be empty (i.e. nil). After establishing the precondition of one of the relevant plans, we also

utilise a motivational library M which is a collection of rules of the form: ψ P, to resume the

agent program P based on changes in beliefs. Therefore, through the motivational library, the

agent can always be aware when to resume the temporarily suspended program, giving us the

following derivation rule:

e : (|∆ |) ∈Γ+pr 〈B,A, e : (|∆ |)〉 cov−−→〈B,A,?false〉 ϕθ : Pθ ∈ e : (|∆ |)
〈Π,Λ,B,A,Γ+pr,Γ+de,M〉→ 〈Π,Λ,B,A,Γ+pr \{e : (∆)},Γ+de ∪ {goal(ϕθ,nil)},M∪ {ϕθ e : (|∆ |)}〉 Rcov

The rule Rcov is first to suspend all relevant plans of a given goal (i.e. Γ+pr \ e : (|∆ |)) in the

procedural intention set while adopting a precondition of a relevant plan to be a declarative
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Γ+pr Γ−pr

(1) e : (|∆ |)
(2) act

(3) P

M

(3) ϕ P

Γ+dr Γ−dr

(1) Rcov (2) Rpre (3) Mpr

Γ+pr

(3) P

Γ−pr

(1) e : (|∆ |)
(2) act

M

(1) ϕθ e : (|∆ |)
(2) φθ act

Γ+dr

(1) goal(ϕθ,nil)

(2) goal(φθ,nil)

Γ−dr

Figure 4.2: Diagrammatic Evolutions of the Rule (1) Rcov, (2) Rpre, and (3) Mpr

intention achieved by FPP (i.e. Γ+de∪{goal(ϕθ,nil)}). After the adoption of such a pure declarative

intention, it also adopts a new motivation rule ϕθ e : (| ∆ |) to resume the suspended agent

program e : (| ∆ |) once ϕθ holds. As such, the BDI agents can automatically resume selecting

an applicable plan to address the event e after the precondition of one of its relevant plans is

established by FPP. The pictorial form of illustration of this rule is given and denoted by (1)

in Figure 4.2. Also, it is noted we only mention M in the agent configuration when it needs

modifying; for all other rules, the motivational library remains unchanged, thus omitted.

The second recovery strategy is to recover the precondition failure in which the precondition of

an action does not hold right before being executed. To recover the precondition failure, similarly,

the agent can temporarily suspend such a non-executable action in the procedural intention and

adopt its precondition in the declarative intention before trying executing it again. We have the

following rule Rpre with the pictorial form of illustration of this rule, denoted by (2), in Figure 4.2.

a :ψ←φ−;φ+ ∈Λ aθ = act ∈Γ+pr 〈B,A,act〉 pre−−→〈B,A,?false〉
〈Π,Λ,B,A,Γ+pr,Γ+de,M〉→ 〈Π,Λ,B,Γ+pr \{act},Γ+de ∪ {goal(ψθ,nil)},M∪ {ψθ act}〉 Rpre

We now close this section by providing an extra derivation rule to reactivate a suspended

procedural intention via a motivation rule with the pictorial form of illustration of this rule,

denoted by (3), in Figure 4.2.

P ∈Γ−de ϕθ P ∈M B |=ϕθ
〈Π,Λ,B,A,Γ+pr,Γde,M〉→ 〈Π,Λ,B,A,Γ+pr ∪ {P},Γde,M\{ϕθ P}〉 Mpr
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4.3.2 Declarative Execution Failure Recovery

In this section, we discuss how to recover the declarative execution failure discussed in Sec-

tion 4.2.2. The first recovery strategy is to recover the procedural component failure when the

procedural component P which is used to achieve the success condition in a declarative goal

goal(ϕs,P,ϕ f ) can no longer progress further. When such a prodedural program P is blocked

and either the success condition ϕs or failure condition ϕ f holds, then the declarative goal

goal(ϕs,P,ϕ f ) is not accomplished. Recall that the ultimate accomplishment sign of a declarative

goal is that the success condition holds. Therefore, instead of recovering for the failure of the

actual procedural component, we decide to discard such a normal declarative goal first. Secondly,

the relevant pure declarative goal is obtained by keeping the success and failure condition in

the original normal declarative goal and then added it into the declarative intention for FPP to

achieve. Thirdly, we also suspend the agent program (i.e. P ′′) which follows this normal declara-

tive goal (i.e. goal(ϕs,P,ϕ f );P ′′) and resume P ′′ when the success condition is achieved via the

motivational library ϕs P ′′. In contrast to the alternative convoluted behaviour, which hopes to

achieve ϕs by recovering the procedural component P, our approach is direct and can potentially

save the cost of execution. The following derivation rule captures our direct approach:

P ′ = goal(ϕs,P,ϕ f );P ′′ ∈Γ+pr 〈B,A,P ′〉 fail−−→〈B,A,?false〉
〈Π,Λ,B,A,Γpr ,Γ+de〉→ 〈Π,Λ,B,A,〈Γ+pr \{P ′},Γ−pr \{goal(ϕs,P,ϕ f )}〉,Γ+de ∪ {goal(ϕs,ϕ f )},M∪ {ϕs P ′′}〉 Rfail

In rule Rfail, 〈Γ+pr\{P ′},Γ−pr\{goal(ϕs,P,ϕ f )}〉 ensures the deletion of the normal declarative goal

goal(ϕs,P,ϕ f ) from the procedural intentions and the suspension of the agent program following

goal(ϕs,P,ϕ f ), namely P ′′. The adoption of a new pure declarative intention goal(ϕs,ϕ f ) is

achieved by Γ+de∪ {goal(ϕs,ϕ f )}. Finally, M∪ {ϕs P ′′} adds a motivation rule ϕs P ′′ to pursue

the agent program P ′′ which follows the original declarative goal program goal(ϕs,P,ϕ f ). The

pictorial form of illustration of this rule is given and denoted by (1) in Figure 4.3.

Similarly, we can recover the empty procedure failure in the same way as we do in procedural

component failure. Therefore, we have the following derivation rule for empty procedure failure,

and its pictorial form of illustration is given and denoted by (2) in Figure 4.3.

P = goal(ϕs,nil,ϕ f );P ′ ∈Γ+pr 〈B,A, goal(ϕs,nil,ϕ f )〉 nil−−→〈B,A,?false〉
〈Π,Λ,B,A,Γpr ,Γ+de〉→ 〈Π,Λ,B,A,〈Γ+pr \{P},Γ−pr \{goal(ϕs,nil,ϕ f )}〉,Γ+de ∪ {goal(ϕs,ϕ f )},M∪ {ϕs P ′}〉 Remp

We also allow adding a pure declarative goal to the declarative intention set Γde in a proactive

manner through the motivational library M. Semantically, we need to add another derivation

rule for the motivational library M so that a pure declarative goal can be added directly to Γde

when the rule is triggered (first and second premise), and the program is a pure declarative

goal (third premise) where the label mot stands for motivation. Similarly, its pictorial form of

illustration is given and denoted by (3) in Figure 4.3.

ψ P ∈M B |=ψθ P = goal(ϕs,ϕf )
〈Π,Λ,B,A,Γ+de,M〉 −→ 〈Π,Λ,B,A,Γ+de ∪ {P},M\{ψ P}〉 Rmot
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(3) goal(ϕs,ϕ f )

Γ−dr

Figure 4.3: Diagrammatic Evolution of the Rule (1) Rfail, (2) Remp, and (3) Rmot

Finally, we close this section by noting that all we have been doing is to add the appropriate

pure declarative goals to the declarative intention set for FPP to achieve in order to recover

some execution failure. In the following section, we show how to invoke FPP to address the pure

declarative goals and how the BDI agents execute the solutions from FPP to actually recover

execution failure.

4.4 First-Principles Planning in BDI

We now consider how FPP integrates with the BDI system and how BDI manages FPP. Firstly,

when either ϕs or ϕ f is true, the pure declarative goal goal(ϕs,ϕf ) has been completed. Therefore,

it should be dropped from Γde shown in the following derivation rule:

G ∈Γde G = goal(ϕs,ϕf ) B |=ϕs ∨ϕ f

〈Π,Λ,B,A,Γde〉 drop−−−→〈Π,Λ,B,A,Γde \{G}〉
Gdrop

Recall that in Stanford Research Institute Problem Solver (STRIPS), an FPP planning

problem is a 3-ary tuple 〈s0,ϕg,O〉 where s0 represents the initial state, ϕg the goal formula, and

O a set of operators (seen in Section 2.4.2). Let goal(ϕs,ϕ f ) be a pure declarative goal in a BDI

agent whose current belief is B and action library is Λ. For each planning to address the pure

declarative goal goal(ϕs,ϕ f ), we can have a corresponding FPP problem 〈B,ϕs,Λ〉 where B is

the initial state of this planning, ϕs the goal formula, and Λ a set of operators. Naturally, the
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solution of an FPP problem 〈B,ϕs,Λ〉 is denoted to be sol(B,ϕs,Λ). From now on, we will also

distinguish between online planning, e.g. [KE12] and offline planning, e.g. [HN01]. Recall that

offline planning generates a complete sequence of actions and executes them one by one to reach a

goal state whereas online planning generates an incomplete plan, and interleaves execution and

planning until a goal state is reached. In this thesis, we are interested in the online case when

a single action is returned based on current belief states, and executed immediately. Formally,

the offline solution of an FPP problem 〈B,ϕs,Λ〉 can be written as soloff (B,ϕs,Λ)= act1; . . . ;actn

whereas the online solution solon(B,ϕs,Λ)= act. Furthermore, we denote the action act generated

by FPP as actFPP to distinguish itself from actions written by BDI programers when necessary.

In practice, this extra information can be easily enclosed by, e.g. annotation in Jason [BHW07].

In the following part, we will provide different derivation rules for accommodating each type of

planning due to their aforementioned contrasting nature.

In offline planning, a complete sequence of actions to solve an FPP problem is first generated

and then executed afterwards. The derivation rule for offline planning can be defined as follows:

goal(ϕs,ϕf ) ∈Γ+de soloff (B,ϕs,Λ)= act1; . . . ;actn

〈Π,Λ,B,A,Γ+pr;Γde〉→ 〈Π,Λ,B,A,Γ+pr ∪ {goal(ϕs,act1; . . . ;actn,ϕ f )};Γ−de ∪ {goal(ϕs,ϕf )}〉 Poff
F

The rule of Poff
F shows that the agent will adopt a new declararive goal whose procedural

component is the sequence of actions generated by FPP (i.e. goal(ϕs,act1; . . . ;actn,ϕ f )) to achieve

the successful state ϕs if there exisits a complete offline solution to it (i.e. soloff (B,ϕs,Λ) =
act1; . . . ;actn). The adoption of such a new declararive goal goal(ϕs,act1; . . . ;actn,ϕ f ) takes the

advantage of the existing declarative goal semantics in CAN language (seen in Section 2.3.2.1).

In detail, it allows the agent to halt the execution of this sequence of actions generated by FPP

if either ϕs or ϕ f holds during the execution. Meanwhile, the rule of Poff
F also ensures the BDI

agent to suspends this already planned pure declarative goal (i.e. Γ−de ∪ {goal(ϕs,ϕf )}).

In online planning, the next action is generated in each planning phase and executed after-

wards. This loop of “plan one action–execute one action” is iterated until the goal is reached.

Therefore, the derivation rule for an online planning is defined as follows:

goal(ϕs,ϕf ) ∈Γ+de solon(B,ϕs,Λ)= act P = act;activate(goal(ϕs,ϕf ))

〈Π,Λ,B,A,Γ+pr;Γ−de〉→ 〈Π,Λ,B,A,Γ+pr ∪ {goal(ϕs,P,ϕ f )};Γ−de ∪ {goal(ϕs,ϕf )}〉 Pon
F

The rule Pon
F says when an action act is generated for an FPP 〈B,ϕs,Λ〉 (i.e. solon(B,ϕs,Λ)=

act), a new declarative goal goal(ϕs,P,ϕ f ) is adopted where P = act;activate(goal(ϕs,ϕf )). The

procedural component P = act;activate(goal(ϕs,ϕ f )) first ensures the pursue of the action act

which is returned from online FPP. When the action act is executed, it then calls the FPP again by

reactivating the declarative intention goal(ϕs,ϕf ) via a construct activate. As such, FPP can take

the new belief into consideration and plan for the next action. These two interleaved planning

and execution will be repeated until the success condition is achieved if all possible.
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The construct activate(goal(ϕs,ϕ f )) in the rule Pon
F shares the same spirit with the moti-

vation rules in the motivational library regarding the reactivating purpose. However, unlike

that motivation rules which are conditioned on beliefs, the construct activate(goal(ϕs,ϕ f )) will

immediately activate the suspended declarative intention once it is encountered. Therefore, we

have the following derivation rule to specify the behaviour of construct activate(goal(ϕs,ϕ f )).

P ∈Γ+pr P= activate(goal(ϕs,ϕ f )) goal(ϕs,ϕ f ) ∈Γ−de

〈Π,Λ,B,A,Γpr,Γ−de〉 −→ 〈Π,Λ,B,A,Γpr \{P},Γ+de ∪ {goal(ϕs,ϕ f )}〉 Rede

We have discussed how a BDI agent can execute the planning solution generated from FPP

to recover the execution failure by addressing the related pure declarative goals. To readily

exploit the existing semantics of CAN, we also encapuslate the planning solution within a

new declarative goal (e.g. goal(ϕs,act1; . . . ;actn,ϕ f )) which shares the same success or failure

condition as the related pure declarative goal (e.g. goal(ϕs,ϕ f )). However, it is still possible

that the actions generated by FPP may be blocked, in particular for offline planning due to the

dynamic environment. According to the rule Rfail in our declarative execution failure recovery

strategy in Section 4.3.2, if the procedural component P is blocked in goal(ϕs,P,ϕ f ), the agent

will trigger FPP again to plan to achieve ϕs by adding goal(ϕs,ϕ f ) into the active declarative

goal again. Therefore, a complete loop is reached by allowing the BDI to re-plan if the previous

planning failed. Effectively, this approach creates a blind agent which will continue to pursue an

intention until it believes the intention has actually been achieved.

However, such a blind agent is not always desirable, particularly given that the resource

is bounded. Therefore, we also provide an alternative type of the agent which will disallow

FPP recovering the actions generated by itself at some point. The rationale for this approach is

threefold. First, the purpose of FPP is to recover the plans pre-defined by the agent developers in

the first place. Secondly, despite the potential benefits of recovering the plan solution, such an

approach could give rise to a huge behaviour space for BDI agents with a considerable cost in

terms of planning. Thirdly, subject to the specific domains, the agent should know when it is time

to cease pursuing a goal after a considerable effort has been made. For the purpose of legibility,

in this thesis, we present a rule which overides the rule Rfail and simply disallows FPP keeping

recovering the failed actions generated by FPP (i.e. actFPP ).

P = goal(ϕs,actFPP ;P ′,ϕ f ) ∈Γ+pr goal(ϕs,ϕ f ) ∈Γ−de 〈B,A,actFPP 〉 f ail−−−→〈B,A,?false〉
〈Π,Λ,B,A,Γpr ,Γde〉→ 〈Π,Λ,B,A,Γpr \{P},Γde \{goal(ϕs,ϕ f )}〉 Dis

The rule Dis says that when an FPP-generated action (i.e. actFPP ) is blocked for a pure

declarative goal (i.e. goal(ϕs,ϕ f )), it will discard the entire declarative goal which contains this

blocked action (i.e. Γpr \{P} where P = goal(ϕs,actFPP ;P ′,ϕ f )) and drop such a pure declarative

goal from the declarative intention (i.e. Γde \{goal(ϕs,ϕ f )}). In fact, this rule includes the case

of both online planning and offline planning. To be precise, P ′ = activate(goal(ϕs,ϕ f )) in online

planning while P ′ is the remaining actions generated by FPP (if any) in offline planning case.
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Finally, we stress that the rule Dis is an extreme case when the agent does not allow FPP

to recover the plan solution generated by FPP itself at all. A straightforward extension of the

rule Dis can be obtained by allowing FPP to recover the plan solution generated by FPP itself up

to a certain amount of times (which is the domain-specific). In practice, it is feasible to realise

this more fine-grained control if an agent can keep track of the amount of planning for a certain

pure declarative. However, it suffices for us to present the rule Dis from a theoretical point of

view of integrating planning in BDI agents. Furthermore, we also point out that our approach of

disallowing recovering plan solution in rule Dis only stops the effort of recovering the failure

by FPP inclusively. In the case of procedural execution failure in Section 4.3.1, the agent still

keeps the suspended procedural intention whose procedural failure amounts to the planning

for the related pure declarative goal in the first. In the case of declarative execution failure, the

agent still keeps the procedural intention which follows the blocked declarative goal. In fact, the

motivation rule is still there intact. For example, once the motivation rule is activated (e.g. a

desirable environment change), the agent can still continue to pursue the suspended procedural

intention according to the rule Mpr in the case of procedural execution failure.

4.5 Formal Relationship between FPP and BDI

In this section, we formally study the relationship between FPP and the BDI execution. The

following theorem establishes the link between goal(ϕs,ϕf ) and FPP in both offline and online

setting so that goal(ϕs,ϕf ) can – to some extent – be seen as FPP. Recall that an offline (resp.

online) solution for an FPP problem 〈B,ϕs,Λ〉 is denoted as soloff (B,ϕs,Λ) (resp. solon(B,ϕs,Λ)).

Theorem 1. For any agent,

1. For offline planning, we can have the transition 〈B,A,goal(ϕs,ϕf )〉 ∗−→ 〈B′′,A′′,nil〉 if and

only if soloff (B,ϕs,Λ) = act1; . . . ;actn and 〈B,A,act1; . . . ;actn〉 ∗−→ 〈B′′,A′′,nil〉 such that

B′′ |=ϕs, provided there is no intervention from the outside environment and other concurrent

intentions. The BDI agent can evolve a pure declarative goal goal(ϕs,ϕf ) to an empty

program nil as long as the offline FPP returns a solution, namely act1; . . . ;actn which can

be successfully executed to solve the FPP problem (B,ϕs,Λ).

2. For online planning, 〈B0,A,goal(ϕs,ϕf )〉 ∗−→ 〈Bk,A·act1 ·...·actk,nil〉 with k ≥ 0 if and only if

there exists a solution for each online planning, i.e. solon(B0,ϕs,Λ)= act1, solon(B1,ϕs,Λ)=
act2, · · · , and solon(Bk−1,ϕs,Λ) = actk such that 〈B j−1, A · act1 · ... · act j−1,act j〉 −→ for j ∈
{1, · · · ,k} and Bk |=ϕs. The BDI agent will successfully execute (i.e. will make the success

condition ϕs true) and evolve a pure declarative goal goal(ϕs,ϕf ) to nil if ϕs can be achieved

after the repetition of planning and execution.

Proof. • The proof of (i) relies on the derivation rule Poff
F . Recall that rule Poff

F says that

a successful progression of a pure declarative goal is to generate a solution for execution

74



4.5. FORMAL RELATIONSHIP BETWEEN FPP AND BDI

to achieve the success condition in this pure declarative goal. In offline planning set-

ting, the transition 〈B,A,goal(ϕs,ϕf )〉 ∗−→ 〈B′′,A′′,nil〉 first implies that the goal(ϕs,ϕf )

is progressable, i.e. there exists a complete sequence of actions generated from FPP

(i.e. soloff (B,ϕs,Λ) = act1; . . . ;actn 6= ;). Secondly, since the pure declarative goal can be

successfully drop (i.e. nil) and we have assumed no external environment or concur-

rent intention interventions, then the returned FPP solution must be successfully ex-

ecuted (i.e. 〈B,A,act1; . . . ;actn〉 ∗−→ 〈B′′,A′′,nil〉) to achieve the goal state (i.e. A′′ |= ϕs).

Hence, the right deduced from the left is proved. Let us now prove from right to left.

If soloff (B,ϕs,Λ) = act1; . . . ;actn 6= ; holds, then goal(ϕs,ϕf ) can be progressed. Also if

〈B,A,act1; . . . ;actn〉 ∗−→ 〈B′′,A′′,nil〉 holds, then the successful should be achieved, given

the assumption of no external environment or concurrent intention interventions. There-

fore, the pure declarative goal goal(ϕs,ϕf ) can be dropped with success. Combining these

two, the left deduced from the right is proved. Therefore, the equivalence between the left

and the right holds.

• The proof of (ii) can be given similarly as (i) but depending on the rule Pon
F instead.

In detail, we present its proof by induction on the planning step k. So if k = 0, then

act1 · ... ·actk =;. It means that 〈B,A, (goal(ϕs,ϕf ))〉 6−→ is true if solo(B0,ϕs,Λ)=;, which

holds trivially. Therefore, (ii) holds. Next, suppose the claim holds for all numbers less than

some k ≥ 1. We show that (ii) holds for k. Since we have, by the hypothesis, that there exists

a solution act2 ·act3 · · ·actk such that 〈B j−1,A ·act1 · ... ·act j−1,act j〉 −→ for j ∈ {2, · · · ,k} and

Bk |=ϕs iff 〈B2,A,goal(ϕs,ϕf ))〉 ∗k−1−−−→ 〈Bk,A ·act2 ·act3 · · ·actk,nil〉 where ∗k−1 stands for

the k−1-step closure transition. Clearly, we now only need to discuss the transition from

〈B0,A,goal(ϕs,ϕf )〉 to 〈B1,A ·act1,goal(ϕs,ϕf )〉. According to the rule Pon
F , the transition

from 〈B0,A,goal(ϕs,ϕf )〉 to 〈B1,A ·act1,goal(ϕs,ϕf )〉 can be obtained in these three steps,

(1) adding act1 for execution and the activate structure for goal(ϕs,ϕf ), and suspending

goal(ϕs,ϕf ); (2) executing act1; (3) activate goal(ϕs,ϕf ). If act1 is a solution of FPP problem

〈B,ϕs,Λ〉 for achieving the goal, then the problem is apparently solved already. In this case,

the goal goal(ϕs,ϕf ) will be dropped immediately according to the rule Gdrop as ϕs holds.

Hence (ii) holds. If not, taking into consideration the hypothesis induction applying from 2

to k, (ii) holds still. Therefore, by induction, we have proved (ii).

�

This theorem underpins the theoretical foundation that a successful execution resulting from

our operational rules Poff
F and Pon

F for the pure declarative goal goal(ϕs,ϕf ) corresponds directly

to a sequence of actions from FPP. On the one hand, (i) shows that if an offline planning step

is able to start executing, then there is one solution for this FPP problem, provided there is no

intervention from other concurrent intentions of the BDI agent and the external environment. In a

sense, the offline planning in BDI is local as the possible interplay with the external environment
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and other concurrent intentions are not taken into consideration. In contrast, (ii) avoids the local

nature of offline planning and handle potential interactions while planning. Such online planning

is integrated well with the – desirable – reactive nature of the BDI agents. It allows the agent to

function in domains where the offline plan can be brittle due to the fast-changing environment.

In the following section, we will provide the results on the practical feasibility of embedding FPP

in BDI agents, which confirms and complements the theoretical results given above.

4.6 Feasibility Study

In this section, we demonstrate the practical feasibility of integrating a BDI agent system

with FPP. We show how the cleaning task scenario from the introduction in Section 4.1 can be

expressed using our CAN(FPP) framework. Without the loss of generality and for the simplicity

of discussions, we consider the offline FPP and assume that the environment is dynamic (i.e.

exogenous events can occur) and deterministic (i.e. the effects of actions can be precisely predicted).

We stress though that the purpose of this discussion is not to present an actual fully developed

CAN(FPP) system, but rather to motivate the merits of the proposed framework to warrant future

work on a fully implemented system. Therefore, we briefly discuss a prototype system which we

designed to verify the feasibility of our approach as a basis for this future work.

1 // Initial beliefs
2
3 dirty(hall)
4 location(lounge)
5 open(door1)
6 open(door2)
7 open(door3)
8 connect(door1, lounge, hall)
9 connect(door2, lounge, backyard)
10 connect(door3, backyard, hall)
11
12 // Initial goals
13
14 !clean(hall)
15
16 // Plan library
17
18 +!clean(X) : dirty(X) & location(X) <- vacuum(X); ? not dirty(X)
19
20 +!clean(X) : dirty(X) & location(Y) & connect(D, Y, X) & open(D)<- goal(at(X), move(D, Y,
X), nil); ? location(X); vacuum(X); ? not dirty(X)

Figure 4.4: BDI Agent in Domestic Cleaning Scenario

We recall that in a cleaning task scenario in Figure 4.1, a robot finished cleaning in the

lounge, and needs to proceed to the hall to vacuum. There is a door labelled as door1 connecting

the lounge and the hall. The straight-forward route to the hall is to go through door1 when
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it is open. There are also two doors, namely door2 and door3 which connect the backyard with

the lounge and the hall, respectively. The design of this robot has been shown by its belief base,

initial goal and plan library in Figure 4.4. The initial beliefs of the robot are described on lines

3-10 and the initial goal to clean the hall is displayed on line 14 of Figure 4.4. In this case, the

achievement goal !clean(hall) is added to the event set of the robot as an external event. At this

point, two plans in the plan library on lines 18-20 are stored as plans P1 and P2, and BDI agent

reasoning cycle begins. Both of plans P1 and P2 are relevant plans for the event !clean(hall).

After validating and unifying the precondition given the current belief base, plan P2 (see line

20) is identified as an applicable plan and becomes an intention in the procedural intention

Γpr adopted for the execution. The execution of the body of P2 starts from the execution of

an ordinary declarative goal goal(at(hall), move(door1,lounge,hall), nil) which purses

action move(door1,lounge,hall) to achieve the successful state at(hall) with empty failure

condition nil. However, it is realistic to expect in a real life setting that some situation can block

the execution of the robot (i.e. exogenous events can occur). For example, in a scenario where

the door1 was slammed shut unexpectedly (i.e. open(door1)) amidst the execution of the action

move(door1,lounge,hall). As a consequence, the action of move(door1,lounge,hall) would

be undesirably halted, thus eventually causing the failure of the whole cleaning task.

To address this problem, the derivation rule Rfail in Section 4.3.2 will elevate the pure

declarative goal goal(at(hall), nil) into the declarative intention Γde with nil being no

failure condition specified and suspend the rest of programs. Semantically, an FPP problem

〈B,at(hall),Λ〉 for goal(at(hall), nil) is to indicate that a first-principles planner will be

triggered to generate a sequence of actions from the action libraryΛ to achieve the successful state

at(hall) from the initial belief state B. When a sequence of actions act1; . . . ;actn is successfully

generated in the offline fashion, the BDI agent starts to execute actions in act1; . . . ;actn in turn in

order to reach a goal at(hall). The goal is achieved if and only if 〈B,A,act1; . . . ;actn〉 ∗−→〈B′′,A ·
act1; . . . ;actn,nil〉 such that B′′ |= at(hall), provided without interplay with other concurrent

intentions of the agent and the external environment. In practice, the BDI agent will need to

pass along the successful state at(hall) it wants to achieve, the current belief B, and a set

of action Λ to the first-principles planner when calling the planner. We choose an offline first-

principles planner called Fast-Forward planner1 and employ the Planning Domain Definition

Language (PDDL) [MGH+98] for specifying planning problems for the first-principles planner in

this concrete example. Due to the syntactic knowledge difference, the transformation of knowledge

(e.g. predicate, belief, and action) between BDI and PDDL is required to be conducted to generate

PDDL planning problem specification. Afterwards, the first-principles planner deliberates and

generates a plan solution if all possible. Finally, a sequence of actions is returned from the

planner to reach the successful state at(hall), denoted as move(door2, lounge, backyard);

move(door3, backyard, hall). It states the robot can move to the backyard through the door2

1https://fai.cs.uni-saarland.de/hoffmann/ff.html
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first and proceed to the hall through the door3. The route is depicted pictorially in Figure 4.1.

After arriving at the hall, we can see that the rest of agent programs will be resumed according

to the derivation rule Rfail and can indeed be progressed with success. For example, the test goal

?location(hall) will be confirmed with success.

This case study on the blocked plan-body program highlights a number of key benefits

offered by the CAN(FPP) systems. Compared to classical BDI agent, we are able to improve the

robustness of the BDI agent systems to tackle the problems beyond their current reach (e.g. due

to incomplete plans and dynamic environment). Compared to a pure FPP, our formal framework

ensures maximums reactiveness for most of the subgoals (tracked in the procedural intention

Γpr) and only plans on-demand for the pure declarative goals in the declarative intention Γde.

4.7 Conclusions

In Chapter 1, we emphasised how we wanted to look at planning extension of BDI agent systems.

The BDI framework, by itself, is used to model intelligent agents in complex domains. However,

by relying on a set of pre-defined plans, it exclusively limits the autonomy and applicability of

the resulting agents, particularly when the execution failure occurs. To this end, we introduced

CAN(FPP) framework with a strong theoretical underpinning for integrating first-principles

planning (FPP) within BDI agent systems based on the intrinsic relationship between the two.

It is not a new idea to combine the power of planning with BDI to increase the robustness of

the resulting agents as discussed in Section 3.1 and Section 3.2 in Chapter 3. However, most of

the current approaches address the integration in a rigid and ad-hoc fashion. As such, while often

improving the performance of the BDI agents, these approaches fail to utilise the full potential of

FPP and overlook the relevant theoretical underpinnings of FPP in the existing BDI agents. This

is particularly important to an agent which already has a solid theoretical basis.

In this chapter, we introduced a formal operational semantics that incorporates FPP, and

that lends power to BDI agents when the situation calls for it. We do this by extending the CAN

language (which is a classical and popular BDI programming language), and providing it with

novel operational semantics to handle a tight integration with FPP. As such, a BDI agent can

accomplish the goals beyond its own pre-defined capabilities. We start with enumerating all

types of execution which are deemed either as a failure, or simply ignored by the current BDI

but may cause some problems later on. These types of execution failure limit the robustness of

the resulting agent when it may have the knowledge to recover them by generating new plans.

Therefore, the integration and employment of FPP in BDI framework is naturally motivated. We

see that each type of execution failure can be precisely captured by the derivation rule at the

intention level. To efficiently manage the existing programs in BDI and FPP, we also introduce

the concept of declarative intention, which is used by FPP, and it extends the intentions in BDI

with new declarative intentions. With the newly extended intention set and a list of execution
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failure captured by precise derivation rules, we provide the recovery strategy for each type of

execution failure and articulate how BDI manages FPP for its best interests. To strengthen the

theoretical foundation of the BDI agents, we have also established a theorem that the principled

integration between FPP and BDI execution is indeed the one intuitively expected both in offline

and online planning.

To conclude, we have considered a formal embedding of FPP in the popular BDI agent

framework. By doing so, the BDI agents can build new plans when needed to achieve its designed

objectiveness. We believe the work presented here lays a firm foundation for augmenting the

range of behaviours of the agents by expanding the set of BDI plans available to the agent from

FPP. More importantly, this contribution is a significant step towards incorporating different

types of advanced planning techniques into BDI agent systems in a principled manner. In the

next chapter we will advance the state-of-art of the hybrid planning BDI agents by proposing a

novel BDI plan library evolution architecture to improve the adaptivity of the BDI agents which

operates in a fast-changing environment. To achieve this, we introduce the plan library expansion

and contraction scheme. The plan library expansion is to adopt new plans generated from the

first-principles planner for future reuse. The contraction scheme is accomplished by defining

the plan library contraction operator regarding the rationality postulates to remove undesirable

plans (e.g. obsolete or incorrect plans).
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5
EQUIPPING BDI AGENTS WITH ADAPTIVE PLAN LIBRARY

The bulk of this chapter has been published online in [XBML18b].

5.1 Introduction

In the previous chapter we looked at an extension of Belief-Desire-Intention (BDI) that allows for

the inclusion of a planning capability to recover the execution failure by generating new plans

on demand. We discussed how First-principles Planning (FPP) could recover each situation of

execution failure specified by a clear derivation rule. We also illustrate how BDI agents manage

both its existing part of agent programs and the newly embedded FPP in a systematic manner.

Such a line of extension increases the robustness of BDI agents by combining the power of

planning on-demand to generate new plans. However, we did not look at how an agent can

incorporate these new plans (e.g. from external planning tools) for future use and potentially

delete some of its old plans to adapt to a changing environment.

Indeed, the intelligent agents should be able to adapt to a changing environment. The current

approaches to implement BDI agents are not able to do so because the plan libraries of BDI

agents are fixed and pre-defined. Nevertheless, real-world environments do often change over

time, and realistic environments can be non-deterministic. Such non-deterministic nature of

the environment makes it particularly difficult for an agent designer to foresee all eventualities.

Hence, it is almost impossible to create plans in advance to deal with all obscure situations.

When an intelligent agent ends up in a situation where its pre-defined response is inadequate

or incorrect because the environment changed, or in a situation that was not foreseen at design

time, it should be able to augment the range of behaviours (i.e. the BDI plans) in order to cope

with changes in the environment. Furthermore, the plans can also become pro-error or no longer
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useful, given that the environment can change over time. When some plans become unsuitable

for the current state of the environment, the agent should be able to discard them for adaptivity.

To illustrate the problem, consider the example of a Mars Rover exploring the surface of Mars.

The Rover, which is pre-designed with tasks (e.g. carrying out science experiments), must utilise a

high degree of autonomy due to the high-latency communication channels to Earth. For example,

when an off-nominal event (e.g. a blue rock) is detected, it would increase science exploration if

the Rover can respond to such “science opportunities”. This autonomous behaviour implies that

new plans (e.g. navigation plan) may need to be generated. Furthermore, since the Rover will

always return to the lander to deliver samples to the ascent vehicle, this lends an opportunity

to the Rover to (potentially) use the knowledge obtained during navigation to a sampling site

on its return. If the Rover has safely navigated to a location, “remembering” the route it took

(i.e. adding such a navigation plan to its plan library) and then returning by the same path are

promising features highlighted in [BMH08]. However, some of these “remembered’’ plans may fail

because of the fast-changing Martian surface. Therefore, the future planetary Rovers demand

more adaptive agent systems which can both add and delete plans intelligently.

However, we can see that most of these planning extensions overlooked the potential adoption

of new plans generated by FPP, and continue to treat the plan library as a fixed and pre-defined

set of plan rules. For example, to compensate for the inadequacy of a plan library in an uncertain

environment, the authors of [BMH+16] proposed the AgentSpeak+ framework, which extends

AgentSpeak with a mechanism for probabilistic planning named Partially Observable Markov De-

cision Processes (Partially Observable Markov Decision Processes (POMDPs)) [KLC98]. However,

once the goal was met, the (potentially valuable) plan obtained from the POMDPs was simply

forgotten and discarded. Other promising works, such as [DI99, ML07, SSP09], proposed the

integration of classical planners and BDI agents to generate new plans. Unfortunately, none of

them considers expanding the set of pre-defined plans by adopting these useful and hard-fought

new plans generated from external planning tools. There is one work considering the reuse of

new plans (achieved by adding them to the plan library) found in [ML08]. Still, this work solely

focuses on leveraging new plans by deriving optimal context conditions, thus approaching the

plan library expansion in an ad-hoc manner.

In this chapter, we design BDI agents which can adapt to the changing environment by

dropping the assumption of fixedness of the pre-defined plan library for the mainstream of BDI

agents. To do so, we investigate the structure of a pre-defined plan library and define a generic

framework that enables a BDI agent to incorporate new plans from, e.g. automated planning tools

for unforeseen situations. We will refer to this step as plan library expansion. However, merely

adding plans is not enough for an agent. As the agent ages, some plans may become unsuitable,

hampering its reactive nature which is crucial to the success of BDI agents. To illustrate such

a case, an approach to an event (e.g. the need to enter another room) which worked in the past

(e.g. turning a handle) may no longer work in the future (e.g. the handle has been removed, and
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a button needs to be pressed instead). Therefore, there is a need for plan library contraction

as well. Indeed, plan library contraction is an altogether more significant – albeit challenging –

problem than expansion. Unlike plan library expansion which adds plans because of the need,

plan library contraction needs to determine which plans are no longer deemed valuable and

so can be removed without damaging the internal structure of the plan library. Therefore, it

relies on both qualitative and quantitative measures associated with each plan in the library.

For example, a plan may be flagged for the potential deletion because it became obsolete (e.g. a

low number of calls) or because it became incorrect (e.g. a high failure rate). However, due to the

nature of a plan library, care must be taken when deleting plans to avoid undesirable side-effects.

For instance, it could damage the agent more to delete an incorrect (sub)plan which is relied upon

by another highly successful plan.

To achieve these objectives in this chapter, we follow a principled approach to a plan library

expansion and contraction, motivated by postulates that clearly highlight the underlying assump-

tions, and supported by measures which are able to characterise plans in the plan library. The

contributions of this chapter are, therefore, threefold. Firstly, we provide a systematic specifi-

cation of domain-independent characteristics (e.g. the quality of plans) of the plan library as

the basis for the reasoning of the plan library expansion and contraction. Secondly, we define a

plan library expansion operator and formally shows the benefits of expansion regarding relevant

characteristics. Thirdly, we introduce an operator for plan library contraction which takes the

earlier characteristics into account, and which balances the need for reactivity, the fragility

of the plan library, and the correctness and overall performance of the agent. To demonstrate

the feasibility of the proposed plan library contraction operator, we present a multi-criteria

argumentation-based decision making to instantiate a contraction operator exemplified in a

planetary vehicle scenario.

The remainder of this chapter is organised as follows. In Section 5.2, we introduce a set of

measures that characterise the performance and structure of plans. These new measures are

intuitive and domain-independent. Together, they form a set of binary relations as the basis to

construct the plan library expansion and contraction operator. In Section 5.3, we give a principled

definition of plan library expansion operator with some postulates and shows that the expansion

of a plan library will only improve the overall performance of the resulting BDI agents. Indeed,

as we will see, the expansion of a plan library will never cause a decrease of the number of goals

an agent can respond to, and the number of relevant plans it has to address a given goal. Finally,

in Section 5.4, we propose some postulates for a plan library contraction operator. In addition, we

also present a concrete instantiation of such a contraction operator in a Mars Rover scenario and

prove that this instantiation indeed is a contraction operator.
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5.2 Plan Library Analysis

In this section, we establish some measures to capture the characteristics of plans (e.g. the

performance of plans, and the relationships between them) in a BDI agent system. This section

will provide the foundations for understanding both how to compute them, and how they can be

used for the plan library expansion in Section 5.3 and contraction reasoning in Section 5.4.

5.2.1 Measuring Performance of Plans

In this chapter, we use P to stand for a set of plans and T a set of time points. We start by

introducing notations for plan execution as follows:

Definition 1. A function S :P ×T → {>,⊥,∅} is called a status function.

A status function records the success and failure of plans during agent execution while the

agent is running. For example, S(P1,3)=> means that plan P1 succeeded at time point 3 while

S(P2,5)=⊥ says that plan P2 failed at time point 5. Finally, S(P, t)=∅ if it didn’t succeed or fail

at time point t (e.g. still in execution). In principle, the success (denoted as >) or failure (denoted

as ⊥) of a plan is determined by its primitive actions as the actions are ultimate means to interact

with the environment. In this chapter, we also assume that an action fails if it cannot be executed

or side-effects taking place after execution, which agrees with the type of precondition failure and

effect failure discussed in Section 4.2. Therefore, in order for a plan P to succeed, all primitive

actions in P need to succeed. Otherwise, we can say that the plan P fails.

We now introduce the execution frequency of plans, which measure how many times a plan

has been completely executed over a given set of time points, and success rate, which is based on

the execution frequency to capture the relative performance quality of each plan.

Definition 2. An execution frequency function δ :P ×T ×T → N is defined for each P ∈P and

each t1, tn ∈ T such that t1 ≤ tn as follows:

δ(P, t1, tn)= |{S(P, ti) 6=∅ · i = 1, · · · ,n}|

Definition 3. A success rate for plan P is defined as:

Φ(P, t1, tn)= δs(P, t1, tn)
δ(P, t1, tn)

where δs(P, t1, tn)= |{S(P, ti)=>· i = 1, · · · ,n}| stands for the successful execution frequency.

In Definition 2, the execution frequency simply collects the number of times a plan has led to

either success or failure over a given set of time points between t1 and tn. Furthermore, to avoid

confusion when combined with the set cardinality, we use · instead of | in {S(P, ti) 6=∅· i = 1, · · · ,n}

to denote the set of ti ranging from 1 to n such that S(P, ti) 6=∅. The similar expression is adopted

throughout this chapter when necessary. In Definition 3, the success rate is the percentage of the
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execution frequencies that are successful over a given set of time points. We stress that argument

T ×T allows the agent to have a capture of the quality of plans which can be based on both the

overall performance (i.e. δ(P, t0, tn)) and the latest performance (e.g. δ(P, tn−2, tn)). Such a timely

capacity is vital as the realistic environment is highly dynamic. Therefore, simply having the

overall success rate may prevent the agent from being aware of the recent abruptly growing

failure of some plans.

5.2.2 Relationships Between Plans

We have introduced execution frequency and success rate to provide a performance abstraction

to plans in BDI agents. While they are beneficial, however, it says nothing about the inherent

structural characteristics (i.e. the relationships between plans) of these plans. Let eP be a set of

relevant plans {P1, · · · ,Pn} for achieving an event e. The first thing we are interested in is to know,

and to compute the relevancy of individual plan P, i.e. how many alternative relevant plans a

BDI agent possesses to respond to an event e in different situations.

Definition 4. A relevancy function Υ :P →N is defined to be ΥP (P)= |eP |−1 where P ∈ eP ⊆P .

Definition 4 defines a relevancy measure of a plan to the number of the relevant plans of the

event it responses minus one. For example, when there is one plan P to address an event e, we

can see that the relevancy of P is 0 (i.e. no other relevant plan for addressing e except for itself).

Besides the concept of relevancy, we are also interested in replaceability, which is when there

are two or more plans applicable in the same situation to get the same result (i.e. post-effects).

Intuitively, the “greater” the replaceability of a plan P is, the higher the chance that such a

plan P can be recovered in the event of its failure, thus providing flexibility and robustness

to the whole system. To introduce the concept of what it means by being replaced and the

degree of replaceability, we reply on the concept of overlapping in work of [TSP12] and the

concept of summarisation in [YSL16]. In a nutshell, the overlap of P and {P1, · · · ,Pn}, denoted as

O({P,P1, · · · ,Pn}) in [TSP12], measures the number of situations (i.e. possible worlds) that both

P and {P1, · · · ,Pn} can be applicable. It tells whether two or more plans can be applicable in the

some same situations. For example, O({P,P1, · · · ,Pn}) 6= 0 shows that the situation for both P and

a set of plans {P,P1, · · · ,Pn} to be applicable exists. Meanwhile, the summarised post-effects of a

plan P (i.e. post(P) denoted in [YSL16]) provides a means to check if some plans can achieve the

same result regarding the necessary and possible post-effects. The summarised necessary post-

effects are those which are always true after successfully executing any decomposition of plans

while possible post-effects are those that may result from some decomposition of plans. We use

post({P1, · · · ,Pn}) |= post(P) to represent that the post-effects of executions of S = {P1,P2, · · · ,Pn}

can ensure the post-effects of executions of P to be true. Therefore, we can have the following

definition of what it means being replaceable for a plan P and the measure of the degree of

replaceability of a plan P.
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Definition 5. A plan P can be replaced by a set of plans S = {P1,P2, · · · ,Pn} where Pi 6= P

(i ∈ {1, . . . ,n}), denoted as P Br S, if the overlap of P and {P1, · · · ,Pn}, namely O({P,P1, · · · ,Pn}) 6= 0

and post({P1, · · · ,Pn}) |= post(P).

The concept of replaceability reveals whether a given plan P can be replaced by a set of

different other plans S. Furthermore, it can be seen that if P Br S, then P Br S′ should naturally

hold for any S′ such that S′ ⊇ S. As such, there is an indefinite number of the set of plans to

replace a given plan P as long as there is one set of plans to replace P. To ensure a one-to-one

mapping to plans to their replaceability, therefore, for any given plan P, we are interested in

a particular set of plans S such that P Br S and ∀S′′ $ S, P 7r S′′. Of course, P 7r (S \ P ′)
holds when either O({P}∪S′′)= 0 or post(S) 2 post(P). To abuse the notation, we denote S can

minimally replace P as P Bmr S. We are now ready to formally define the degree of replaceability

of plans as follows:

Definition 6. A degree of replaceability for plan P is a function ςP : P → N, defined to be

ςP (P)= |{S ·P Bmr S}| where P Bmr S stands for that S can minimally replace P.

We can see that the degree of replaceability for P is the number of sets of plans S that can

minimally replace P in Definition 6. Finally, we close the section by noting that what we have

done so far is to define the relevant measures of BDI plans at the individual plan level. In the

following section, we will extend the measures for a given set of plans (e.g. a plan library) to

prepare for plan library expansion and contraction.

5.2.3 Summary Information

We have defined the performance and structural information for each individual plan in BDI

agents. We can now summarise both performance and structural information of an individual

plan to characterise the plan library of a BDI agent system as a whole.

Firstly, we describe how the performance information (e.g. execution frequency) of each plan is

summarised to indicate the performance of a plan library. We apply a mean aggregation method

to provide an average performance of execution frequency and success rate of a plan library.

Definition 7. An execution frequency is a function δ : 2P ×T ×T →R≥0 defined as follows:

δ(Π, t1, tn)=
∑

P∈Πδ(P, t1, tn)
|Π| .

where Π⊆ 2P and δ(P, t1, tn) denotes the execution frequency of plan P between time t1 and tn.

Definition 8. A success rate is a function Φ : 2P ×T ×T →R≥0 defined as follows:

Φ(Π, t1, tn)=
∑

P∈ΠΦs(P, t1, tn)
|{P ∈Π ·δ(P, t1, tn) 6= 0}|
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where Π⊆ 2P , δ(P, t1, tn) refers to execution frequency of plan P between time points t1 and tn,

and δ(P, t1, tn) 6= 0 means P has to be executed at least once between time t1 and tn.

Secondly, we summarise the structural information of a plan library by counting how many

events a plan library accounts for. The intuition of it is that the capability of a BDI agent is

essentially the number of different types of events or goals it can handle. Therefore, we can define

the degree of functionality to formalise such an intuition as follows:

Definition 9. A degree of the functionality is a function F : 2P →N defined as follows:

F (Π)= |{eP ·P ∈Π}|

where Π ∈ 2P and eP is the triggering event of plan P.

Recall that the measure of relevancy of a given plan quantifies the number of relevant

plans of the event it addresses, while the degree of replaceability counts the number of sets of

plans which are available to replace such a plan. We now are ready to introduce our four novel

ordering relations corresponding to the three summaries we established above (i.e. execution

frequency, success rate, and functionality), and one extra ordering relation based on relevancy

and replaceability. Such a set of orderings for a set of plans are given as follows:

Definition 10. A set of binary relations º over 2P with regard to execution frequency δ, success

rate Φ, functionality F , and relevancy Υ and replaceability ς measure, is a 4-tuple

〈ºactiveness,ºsuccess,ºfunctionality,ºrobustness〉

where ∀Π,Π′ ∈ 2P

• Πºactiveness Π
′ iff δ(Π, t1, tn)≥ δ(Π′, t1, tn);

• Πºsuccess Π
′ iff Φ(Π, t1, tn)≥Φ(Π′, t1, tn);

• Πºfunctionality Π
′ iff F (Π)≥F (Π′);

• Πºrobustness Π
′ iff @P ∈Π s.t. P ∈Π′, ΥΠ(P)≤ΥΠ′(P), and ςΠ(P)≤ ςΠ′(P);

For any binary relation, we have that Π 'Π′ if Π ºΠ′ and Π′ ºΠ while Π ÂΠ′ if Π ºΠ′

and Π�Π′. For a plan library Π, if Π has a higher execution frequency than Π′, denoted as

Πºactiveness Π
′, then it is interpreted as that Π is believed to be more active than Π′. The second

ordering Πºsuccess Π
′ means that Π has a higher success rate than Π′, and Π is believed to be

more successful than Π′. The third ordering Πºfunctionality Π
′ means that Π can respond to more

types of events than Π′ can. Finally, the fourth ordering Πºrobustness Π
′ shows that for every plan

P ∈Π, Π has both more relevant and replaceable plans for P than Π′ does.

Now that we have defined all relevant measures, we look into how we can expand and contract

a plan library sensibly and predictably based on the summaries of a given plan library.
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5.3 Plan Library Expansion

In this section, we propose some postulates for the plan library expansion. These postulates

rationalise the desired behaviours of our plan library expansion and serve as a premise for further

reasoning, e.g. the properties of the proposed plan library expansion scheme. For illustration and

simplicity, we will first consider using a single plan to represent inputs, and then extend to the

general case where we use any set of plans to represent general inputs.

5.3.1 Formal Expansion Framework

We start with the definition of an expansion operator ◦: Given a plan library Π and a plan P,

Π◦P denotes the expansion of Π by P with ◦ if and only if it satisfies the following postulates:

EO1 Π◦P is a plan library.

This postulate ensures that the expansion is still a plan library.

EO2 P ∈Π◦P and Π⊆Π◦P.

This postulate states that the new plan is obtained after the expansion and the result of plan

library expansion Π◦P indeed subsumes the knowledge of the previous plan library Π.

EO3 If P ∈Π, then Π◦P =Π.

This postulate indicates that the plan library expansion Π◦P should only consider a new plan P

which is initially not included in Π.

EO4 (Π◦P)◦P ′ = (Π◦P ′)◦P for any plan P and P ′.

This postulate says that the order of inputs should not influence the outcome of expansion.

Proposition 1. If an operator ◦ satisfies the postulate EO1, EO2, and EO4, we have Π◦{P,P ′}=
(Π◦P)◦P ′ = (Π◦P ′)◦P.

This proposition shows that the expansion of a set of plans is equivalent to a sequence of

expansions by a single plan. In addition, the order of expansion makes no difference either.

Now we can give the following representation theorem for these postulates.

Theorem 2. Given an operator ◦, Π◦P satisfies EO1-E04 precisely when

Π◦P ºfunctionality Π and Π◦P ºrobustness Π.
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This theorem formally confirms that the expansion of a plan library Π by P will never cause

a decrease of functionality or robustness. In other words, after an expansion of a plan library, it

would only be more events or goals that an agent can respond to, more relevant plans for some

goals, and more replaceable plans for some plans.

Finally, in order to extend these postulates to the case that new input is not restricted to only

one plan, we simply need to replace a single input plan P with a set of plans P .

5.4 Plan Library Contraction

In this section, we give a principled definition of a plan library contraction operator. We then

present a concrete instantiation of such an operator in a Mars Rover scenario. We then close this

section by showing that this instantiation satisfies the postulates of a contraction operator.

5.4.1 Formal Contraction Framework

We start with the definition of a contraction operator ∇: Given a plan library Π, ∇(Π) denotes the

contraction of Π by ∇ iff it satisfies the following postulates:

CO1 ∇(Π) is a plan library.

This postulate ensures the result of contraction is a plan library.

CO2 ∇(Π)⊆Π.

This postulate says the result of a contraction operator is a subset of the original plan library.

CO3 Given a set of plans P , if P ⊆Π\∇(Π) and P ⊆Π′ ⊆Π, then P ⊆Π′ \∇(Π′).

This relativity postulate states that if a set of plans P are contractible in the plan library Π (i.e.

P ⊆Π\∇(Π)), then they must be deemed as contractible in any subset Π′ (i.e. P ⊆Π′ \∇(Π′))
which includes them (i.e. P ⊆Π′ ⊆Π).

CO4 ∇(Π)ºΠ where º∈ {ºactiveness,ºsuccess}.

This postulate restricts the behaviour of the contraction by saying that the contraction ∇(Π)

should not witness the decrease of both execution frequency and success rate of Π.

CO5 ∀P ∈Π\∇(Π), then ς∇(Π)(P)> 0.

This postulate takes care of the fragility of the plan library by ensuring that there are still plans

left in ∇(Π) which can replace deleted plan P.

With these postulates, we have the following results that characterise contraction operators that

satisfy some of postulates CO1-CO5.
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Proposition 2. If an operator ∇ satisfies the postulate CO1-CO3, then the following holds:

(1) ∇(Π′)⊆∇(Π) if Π′ ⊆Π ordered set inclusion

(2) ∇(Π∩Π′)⊆∇(Π)∩∇(Π′) intersection set inclusion

(3) ∇(Π\Π′)⊆∇(Π)\∇(Π′) difference set inclusion

(4) ∇(Π)∪∇(Π′)⊆∇(Π∪Π′) union set inclusion

Proof. The first condition shows that the contraction preserves the set inclusion order. If (Π\

∇(Π))∩Π′ = ;, then we have Π′ ⊆ ∇(Π). Given CO2 (i.e. ∇(Π′) ⊆Π′), we have ∇(Π′) ⊆ ∇(Π). If

(Π\∇(Π))∩Π′ =P 6= ;, we have Π′ \P ⊆∇(Π). Given CO3, we have P ⊆Π′ \∇(Π′), which means

∇(Π′)⊆Π′\P . Hence we have ∇(Π′)⊆∇(Π). In the second condition, it shows that the contraction

on intersection of Π and Π′ are a subset of the intersection of the contraction results of ∇(Π) and

∇(Π′). Notice Π∩Π′ is a subset of both Π and Π′. Therefore, ∇(Π∩Π′)⊆∇(Π) and ∇(Π∩Π′)⊆∇(Π′)
according to the first condition. Hence ∇(Π∩Π′)⊆∇(Π)∩∇(Π′). Similar arguments can be give to

the third and fourth condition by noticing Π\Π′ ⊆Π (i.e. difference set inclusion) and Π′ ⊆Π in

third condition, and Π⊆Π∪Π′ (i.e. union set inclusion) and Π′ ⊆Π∪Π′ in fourth condition. �

5.4.2 Instantiation of Plan Library Contraction

In this section, a concrete multi-criteria argumentation-based decision making is proposed to

instantiate the abstract contraction operator presented in Section 5.4.1. We stress though that

the purpose of this instantiation is not to signify its supremacy over other potential instantiations,

but rather to verify the existence and feasibility of our contraction operator. Also, the benchmark

comparison of different instantiated contraction operators is beyond the scope of this chapter.

The multi-criteria argumentation-based decision making is a general-purpose decision frame-

work which combines the multi-criteria decision [OMT07] with knowledge-based qualitative

argumentation theory [AP06]. Argumentation serves to support or attack whether a particular

candidate is better than another based on knowledge processed by an agent. The framework

employed in this work is formally stated in [FEGS14] and is introduced in a self-contained fashion

in this section. Whenever there is any potential conflict with the previous terminologies, it will be

pointed out to avoid the confusion. The framework in [FEGS14] is conceptually composed by three

components, namely 〈X ,K,R〉. The first component X is the set of all possible candidates (e.g.

a set of plans) presented to the decision maker. The second component is epistemic knowledge

K, denoted as a 5-tuple 〈C,>C ,λ,$,ACC〉. It allows the agent to reason and compare candidates

among each other and decide which is/are best candidate/s to be chosen. A set of non-cyclic (i.e.

linear) criteria C (e.g. success rate) is used to compare the elements in X . The strict order of the

element of C, denoted as >C , is given such that (Ci,C j) ∈ C means that the criteria Ci is preferred

than C j. In order to quantify the linear preference, each Ci ∈ C has a subinterval that states

the preference among all criteria (e.g. C1 = execution frequency∼ [0,0.25]). A set of clauses (ζ,µ)
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is computed where ζ in the form of q ← p1 ∧·· ·∧ pk (k ≥ 0) says the conclusion q is supported

by p1 ∧·· ·∧ pk, where q, p1, · · · , pk are literals, and µ ∈ [0,1] which express a low bound for the

necessity degree of ζ. A set of uncertain clauses (i.e. µ ∈ (0,1)) is denoted as λ while the set of

certain clauses (i.e. µ = 1) denoted as $. Uncertain clauses with the same conclusion will be

combined to form arguments. A user-specified aggregation function ACC aggregates necessity

degrees of arguments which support a same conclusion q to build accrued structures. Finally, the

decision rules R will be used to select final candidates, denoted as sol(〈X ,K,R〉), based on those

accrued structures. There are two decision rules1 shown as follows:

DR1 : {W}
X⇐ {ws(W,Y)}, not{ws(Z, W)}.

A candidate W ∈ X will be chosen if W is worse (ws) than another candidate Y and there does not

exist Z which is worse than W.

DR2 : {W, Y}
X⇐ {sm(W,Y)}, not{ws(Z, W)}.

Both W and Y ∈ X , deemed as equivalently bad i.e. same (sm), will be chosen if there is no Z

which is worse than W and Y.

Following the methodology of the formalism in [FEGS14], we consider a BDI agent which has

a set of plan P and a set of criteria C = {C1,C2,C3,C4} where C1 = δ(P, t0, tcurrent) is the overall

execution frequency from initial time point t0 to current time point tcurrent (i.e. the moment the

plan contraction starts), C2 = δ(P, t′, tcurrent) the latest execution frequency of P from a chosen

recent time point t′ to tcurrent, C3 the overall success rate, and C4 the latest success rate.

In this chapter, we assume that the agent prioritises the success rate criteria over exe-

cution frequency criteria and prefer the latest information. Therefore, the criteria order >C=
{(C4,C3), (C2,C1), (C4,C2), (C3,C1)}. Since plans that are without any replaceable plans cannot be

deleted and the formalism in [FEGS14] is not concerned with how the possible candidates are

obtained to present to the decision-maker, we will employ postulate CO5 to filter these plans

out. Therefore, we define a specific contraction operator, denoted as ∇abm, and propose a generic

algorithm which implements ∇abm as shown in Algorithm 1:

Definition 11. Let P be a set of plans. We define a contraction operator ∇abm = sol(〈X ,K,R〉)
where sol(〈X ,K,R〉) is the selected candidates of decision problem 〈X ,K,R〉 defined previously,

and X = {P ∈P | ςP (P) > 0,C4(P) < η} where η represents the success rate tolerance threshold

and C4(P) the value of criteria C4 (i.e. latest success rate) of P.

The set of all possible candidates X will not include any plans which do not have replaceable

plans (i.e. ςP (P)> 0) and only have plans with success rates lower than η for potential removal

(i.e. C4(P)< η) shown in step 2 of Algorithm 1. In the following section, all the concepts involved

in the multi-criteria argumentation based decision making in [FEGS14] will be exemplified in

1We modify the rules to choose the worse (ws) plans compared to the original work on finding the better ones.
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Algorithm 1: Computation for Contraction Operator ∇abm

1 function ∇abm(〈X , C,>C , R〉)
2 X = {P ∈P | ςP (P)> 0,C4(P)< η} /* filtering */
3 C = {C1, C2, C3, C4} defined previously
4 >C= {(C4,C3), (C2,C1), (C4,C2), (C3,C1)}
5 Compute uncertain and certain clauses (λ,$)
6 Build arguments (defined in [FEGS14])
7 Apply rules R to select the acceptable candidates
8 return solution of selection

a Mars Rover example to demonstrate how it can effectively assist the selection of plans for

deletion.

5.4.3 Planetary Vehicle Example

In this section, we present an example of planetary vehicle to illustrate the employment of a

concrete plan contraction operator based on the multi-criteria argumentation-based decision

making. Assume that one of the missions of Mars Rover is to use scientific instruments mounted

to the robotic arm of the Rover to investigate and analyse Martian terrain. This requires the

Rover to drive up to a designated target (i.e. terrain navigation plan), position themselves to

reach the target (i.e. Rover positioning plan), and deploy the arm onto the target to perform the

investigation (i.e. arm deployment plan). After remembering several routes from the navigation

planner it took to a designated crater wall, the Rover has plans P1, P2, and P3 to navigate to it

again if needed. Plan P4 and P5 are Rover positioning and arm deployment plan, respectively.

Consider the set of plans Π= {P1,P2,P3,P4,P5} where replaceability ςΠ(P1)= ςΠ(P2)= ςΠ(P3)=
|{P1,P2,P3}|−1= 2, ςΠ(P4)= ςΠ(P5)= |{P4}|−1= |{P5}|−1= 0, and C = {C1,C2,C3,C4} where C1

is the overall execution frequency (oef), C2 the latest execution frequency (lef), C3 overall success

rate (osf), and C4 latest success rate (lsr). We set the lower bound tolerant success rate threshold

η= 0.85.

Table 5.1 shows the possible candidates and their respective values for each criterion (in

C1, C2, C3, and C4) and their respective values normalised to interval [0,1] (in C′
1, C′

2, C′
3, and

C′
4). It is noted that both plan P4 and P5 have been filtered out due to no replaceable plans

available. In other words, plan P4 and P5 are protected from being discarded. To briefly explain

all criteria in the context, let us have a look at plan P1. On the one hand, C1 = 80 for plan P1

means that the plan P1 has been executed 80 times from the initial time point to the current

time point while C2 = 70 for plan P1 indicates that 70 out of these 80 execution are executed

recently, called the latest execution frequency. On the other hand, C3 = 0.8 for plan P1 shows

the success rate of executing P1 from the initial time point to the current time point is 80%

compared to only 50% successful rate in the latest period of time given in C4 = 0.5 for plan P1. To
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obtain the normalisation (for criterion C1), we have initial value C1 for plan P1 is 80, C1 for P2

20, and C1 for P3 70. After the normalisation, we have C′
1 for plan P1 is 80/80 = 1, C′

1 for plan

P2 is 20/80 = 0.25, and C′
1 for plan P3 is 70/80 = 0.88. Similarly, the remaining criteria can be

interpreted and their respective normalised values can be obtained.

Candidates C1 C2 C3 C4 C′
1 C′

2 C′
3 C′

4

P1 80 70 0.8 0.5 1 1 1 0.63

P2 20 5 0.6 0.8 0.25 0.07 0.75 1

P3 70 10 0.7 0.75 0.88 0.14 0.88 0.94

Table 5.1: Criterion Values and Normalised Criterion Values

We now, following the approach from [FEGS14], we explain in details how a set of uncertain

and certain clauses 〈λ,$〉 can be computed presented in Figure 5.1. The necessity degrees of

the clauses belonging to (λ,$) were calculated as follows. Step 1: Normalise the criteria values

(see Ci) to interval [0,1] for all of the criteria (see C′
i) where i ∈ {1, . . . ,4}. Step 2: Compare the

candidates among each other regarding the normalised criteria. The candidate which appears as

the first argument has a worse criteria value than the one that appears as the second argument.

The necessity degree of the clause is calculated as the absolute value of the remainder of the

normalised criteria values. Step 3: Divide the necessity degree obtained in the previous step by

the number of criteria provided to the decision-maker, i.e. by 4 in this case. Let us take an example

of (oef(P2,P1),0.19) in Figure 5.1 to explain how these three steps above work. Firstly, step 1 has

been accomplished shown in Table 5.1. After comparing plan P1 and P2 regarding the criterion

overall execution frequency (oef), we have that the first argument is P2 given its worst criteria

value and the second argument P1. The necessity degree of the clause oef(P2,P1) is obtained by

dividing the absolute value of the remainder of the normalised criteria values (in the step 2) of

P1 and P2 by the number of criteria in the step 3, i.e.
| 0.25−1 |

4
= 0.19. Therefore, we have an

uncertain clause (oef(P2,P1),0.19). Step 4: Assign the subinterval to each criteria according to >C ,

i.e. C1 = oef∼ [0,0.25], C2 = lef∼ [0.25,0.5], C3 = osr∼ [0.5,0.75], and C4 = lsr∼ [0.75,1]. Step 5:

Map the necessity degrees obtained in the previous step to the subinterval assigned to the criteria

in the clause. Step 6: For each clause (ζ,µ) such that ζ is a rule of either ws(W ,Y )← Ci(W ,Y ) or

¬ws(W ,Y ) ← Ci(W ,Y ), we set µ to be the upper bound value of the subinterval assigned to Ci

where i ∈ {1,2,3,4}. Before we explain how to obtain uncertain clauses related to ws(W,Y) and

¬ws(W,Y), it is noted here that we abuse the notation ¬. In fact, the ¬ in ¬ws(W,Y) is called

strong negation (unlike the negation as failure introduced in Section 2.2 in Chapter 2). The

strong negation used in the head of logic rules is to represent the conflictive or contradictory

information. Unless specified, the notion of the strong negation is employed exclusively for

this concrete multi-criteria argumentation-based decision making. The interested readers are
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referred to the work of [GS04] for detailed explanations and usages of strong negation, which is

beyond the scope of this thesis. For the uncertain clause such as (ws(W,Y) ← oef(W ,Y ),0.24), it

specifies a rule with a necessity degree 0.24 that if oef(W ,Y ) holds, then ws(W,Y) holds (where

ws stands for “worse than”). Meanwhile, the similar clause (¬ws(W,Y) ← oef(Y ,W),0.24) can

be understood intuitively as the “negate" form of (ws(W,Y) ← oef(W ,Y ),0.24). Finally, the set

of clauses can obtained with certainty that if sm(W ,Y ) holds (i.e. W and Y are same), then

¬ws(W ,Y ) holds (i.e.W is not worse than Y ), denoted as (¬ws(W ,Y ) ← sm(W ,Y ),1). Similarly,

we have (¬ws(W ,Y ) ← sm(Y ,W),1). Therefore, we can this set of certain clauses denoted as

$= {(¬ws(W ,Y )← sm(W ,Y ),1) (¬ws(W ,Y )← sm(Y ,W),1)}.

λ=



(oef(P2,P1),0.19) (ws(W,Y)← oef(W ,Y ),0.24)

(oef(P2,P3),0.16) (¬ws(W,Y)← oef(Y ,W),0.24)

(oef(P3,P1),0.03) (ws(W,Y)← lef(W ,Y ),0.49)

(lef(P2,P1),0.48) (¬ws(W,Y)← lef(Y ,W),0.49)

(lef(P2,P3),0.27) (ws(W,Y)← osf(W ,Y ),0.74)

(lef(P3,P1),0.47) (¬ws(W,Y)← osf(Y ,W),0.74)

(osr(P2,P1),0.56) (ws(W,Y)← lsr(W ,Y ),0.99)

(osr(P3,P1),0.53) (¬ws(W,Y)← lsr(Y ,W),0.99)

(osr(P2,P3),0.53) (lsr(P1,P2),0.84)

(lsr(P1,P3),0.83) (lsr(P3,P2),0.77)


$= {(¬ws(W ,Y )← sm(W ,Y ),1) (¬ws(W ,Y )← sm(Y ,W),1)}

Figure 5.1: A Set of Uncertain and Certain Clauses

The arguments of the form A = 〈u,h,µ〉 is presented in Figure 5.2 and is built from the

uncertain clause program in which u is a set of uncertain clauses from λ, h the conclusion it sup-

ports (e.g. ws(W,Y)), and µ its necessity degree. For example, the argument A1 = 〈{(ws(P2,P1)←
oef(P2,P1),0.24), (oef(P2,P1),0.19)},ws(P2,P1),0.19〉 is built from two uncertain clauses , namely

(ws(P2,P1)← oef(P2,P1),0.24) and (oef(P2,P1),0.19), both of which support conclusion ws(P2,P1).

The necessity degree of the argument A1 = 0.19= min{0.24,0.19}. Finally, we aggregate the argu-

ments which support the same conclusion h into accrued structures. For example, A1, A7, and

A13 support the same conclusion ws(P2,P1) to build the accrued structure [Ψ1,ws(P2,P1),0.82] in

which Ψ1 =A1∪A7∪A13. To calculate the necessity values for accrued structures, it will use the

ACC function defined as ACC(µ1, · · · ,µn)= [1−∏
(1−µi)]+Kmax(µ1, · · · ,µn)

∏
(1−µi) with K =

0.1. For example, for , the accrued structure [Ψ1,ws(P2,P1),0.82], we have the necessity values

0.82= [1−(1−0.19)×(1−0.48)×(1−0.56)]+0.1×max{0.19,0.48,0.56}×(1−0.19)×(1−0.48)×(1−0.56).

As it can be observed, 12 aggregated arguments shown in Figure 5.2 can be built to support

the reasons by which a candidate should be deemed worse than another one. Those aggregated
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arguments warranted (shown in bold) because of their greater necessity values than their negated

counterparts will be used to compute the final chosen candidate(s) with decision rules R. In this

particular case, only decision rule DR1 can be applied. For candidate P1, precondition of DR1 can

be warranted and there is no warranted accrued structure supporting a conclusion of the kind

ws(Z,P1) to warrant the restriction of rule DR1, hence P1 selected for deletion.

In summary, through this planetary vehicle, we have successfully demonstrated in great

details how the plan library contraction operator can be instantiated to be a concrete multi-

criteria argumentation-based decision-making process. Furthermore, we can see that choosing

plan P1 is quite evident for the so-called human common sense reasoning since it has the worst

latest success rate (i.e. 0.5) which is most important preference criterion, despite having a best

overall success rate. The worst latest success rate may imply that P1 is no longer suitable for

the current Martian surface-navigation task, thus ready to be dropped by the Rover. In the next

section, we will formally prove that such a multi-criteria argumentation-based decision-making

process indeed satisfies the postulates of a plan library contraction operator.

5.4.4 Theorem

Theorem 3. ∇abm = sol(〈X ,K,R〉) is a contraction operator ∇ satisfying CO1-CO5

Proof. Postulates CO1 (i.e. ∇abm(Π) is a plan library) and CO2 (i.e. ∇abm(Π) ⊆ Π) hold as

plans are simply selected and removed from the original plan library Π. Postulate CO3 (i.e.

relativity of contraction) holds for ∇abm due to two computation steps of uncertain clauses λ.

The normalisation of criteria values (in Step 1) and the absolute value of the remainder of the

normalised criteria values (in Step 2) imply that a plan is deemed worse than the others is

in a relative sense in a given set of plans. Postulate CO4 says that the contraction should not

witness the decrease of both activeness and the success rate of the plan library. It holds for ∇abm

because the selected plans to be removed are those which are deemed worse either in success rate

criterion or both success rate and execution frequency criteria than other plans. Therefore, at

least the success rate of all plans will be increased after contraction. Hence CO4 holds. Postulate

CO5 (i.e. the protection of fragility of the plan library) holds for ∇abm because we exclude plans

which do not have any replaceable plans beforehand show in step 2 in Algorithm 1. Therefore,

there are still plans which can replace deleted plans after the contraction. �

5.5 Conclusion

In this chapter, we described measures that characterise the performance and structure of plans,

and provided rationales to guide the process of new plan adoption (i.e. plan library expansion)

and unsuitable plan deletion (i.e. plan library contraction) to obtain an adaptive agent for a

fast-changing environment. Specifically, we introduce the notation of execution frequency to

capture how often a plan is applied, and such execution frequency can further be used to define
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A1 = 〈{(ws(P2,P1)← oef(P2,P1),0.24), (oef(P2,P1),0.19)},ws(P2,P1),0.19〉
A2 = 〈{(¬ws(P1,P2)← oef(P2,P1),0.24), (oef(P2,P1),0.19)},¬ws(P1,P2),0.19〉
A3 = 〈{(ws(P2,P3)← oef(P2,P3),0.24), (oef(P2,P3),0.19)},ws(P2,P3),0.19〉

A4 = 〈{(¬ws(P3,P2)← oef(P2,P3),0.24), (oef(P2,P3),0.19)},¬ws(P3,P2),0.19〉
A5 = 〈{(ws(P3,P1)← oef(P3,P1),0.24), (oef(P3,P1),0.03)},ws(P3,P1),0.03〉

A6 = 〈{(¬ws(P1,P3)← oef(P3,P1),0.24), (oef(P3,P1),0.03)},¬ws(P1,P3),0.03〉
A7 = 〈{(ws(P2,P1)← lef(P2,P1),0.49), (lef(P2,P1),0.48)},ws(P2,P1),0.48〉

A8 = 〈{(¬ws(P1,P2)← lef(P2,P1),0.49), (lef(P2,P1),0.48)},¬ws(P1,P2),0.48〉
A9 = 〈{(ws(P2,P3)← lef(P2,P3),0.49), (lef(P2,P3),0.27)},ws(P2,P3),0.27〉

A10 = 〈{(¬ws(P3,P2)← lef(P2,P3),0.49), (lef(P2,P3),0.27)},¬ws(P3,P2),0.27〉
A11 = 〈{(ws(P3,P1)← lef(P3,P1),0.49), (lef(P3,P1),0.47)},ws(P3,P1),0.47〉

A12 = 〈{(¬ws(P1,P3)← lef(P3,P1),0.49), (lef(P3,P1),0.47)},¬ws(P1,P3),0.47〉
A13 = 〈{(ws(P2,P1)← osr(P2,P1),0.74), (osr(P2,P1),0.56)},ws(P2,P1),0.56〉

A14 = 〈{(¬ws(P1,P2)← osr(P2,P1),0.74), (osr(P2,P1),0.56)},¬ws(P1,P2),0.56〉
A15 = 〈{(ws(P3,P1)← osr(P3,P1),0.74), (osr(P3,P1),0.53)},ws(P3,P1),0.53〉

A16 = 〈{(¬ws(P1,P3)← osr(P3,P1),0.74), (osr(P3,P1),0.53)},¬ws(P1,P3),0.53〉
A17 = 〈{(ws(P2,P3)← osr(P2,P3),0.74), (osr(P2,P3),0.53)},ws(P2,P3),0.53〉

A18 = 〈{(¬ws(P3,P2)← osr(P2,P3),0.74), (osr(P2,P3),0.53)},¬ws(P3,P2),0.53〉
A19 = 〈{(ws(P1,P2)← lsr(P1,P2),0.99), (lsr(P1,P2),0.84)},ws(P1,P2),0.84〉

A20 = 〈{(¬ws(P2,P1)← lsr(P1,P2),0.99), (lsr(P1,P2),0.84)},¬ws(P2,P1),0.84〉
A21 = 〈{(ws(P1,P3)← lsr(P1,P3),0.99), (lsr(P1,P3),0.83)},ws(P1,P3),0.83〉

A22 = 〈{(¬ws(P3,P1)← lsr(P1,P3),0.99), (lsr(P1,P3),0.83)},¬ws(P3,P1),0.83〉
A23 = 〈{(ws(P3,P2)← lsr(P3,P2),0.99), (lsr(P3,P2),0.77)},ws(P3,P2),0.77〉

A24 = 〈{(¬ws(P2,P3)← lsr(P3,P2),0.99), (lsr(P3,P2),0.77)},¬ws(P2,P3),0.77〉
[Ψ1,ws(P2,P1),0.82], [Ψ′

1,¬ws(P2,P1),0.85], Ψ1 =A1 ∪A7 ∪A13, Ψ′
1 =A20

[Ψ2,¬ws(P1,P2),0.82], [Ψ′
2,ws(P1,P2),0.85], Ψ2 =A2 ∪A8 ∪A14, Ψ′

2 =A19
[Ψ3,ws(P2,P3),0.73], [Ψ′

3,¬ws(P2,P3),0.79], Ψ3 =A3 ∪A9 ∪A17, Ψ′
3 =A24

[Ψ4,¬ws(P3,P2),0.73], [Ψ′
4,ws(P3,P2),0.79], Ψ4 =A4 ∪A10 ∪A18, Ψ′

4 =A23
[Ψ5,ws(P3,P1),0.77], [Ψ′

5,¬ws(P3,P1),0.84], Ψ5 =A5 ∪A11 ∪A15, Ψ′
5 =A22

[Ψ6,¬ws(P1,P3),0,77], [Ψ′
6,ws(P1,P3),0.84], Ψ6 =A6 ∪A12 ∪A16, Ψ′

6 =A21

Figure 5.2: Arguments and accrued structures

the concept of the plan success rate to capture how well a plan has been performing. Besides

these performance-based measures, we also introduce the measures that reflect the unique

structure nature of the pre-defined plan library of BDI agents, namely functionality, relevancy,

and replaceability. These measures are all based on intuitive and general concepts in BDI, e.g.

how plans relate to each other and how the agent performs when dealing with specific events or

goals. As such, the measure strategies and rationales we provide in this work are generic and do

not require additional information from the BDI agent developer or the domain, beyond what is

required in the typical BDI agent development. The merit of our framework is that we are one of

the first works which formally define an evolving capacity of the BDI agents through changes

to the set of existing BDI plans, thus increasing the adaptivity of BDI agents. Regarding the

plan library expansion, the plan library expansion operator we proposed would only increase the
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functionality and replaceability of the resulting plan library. Therefore, the agent can potentially

respond to more events with more relevant plans, and has a better chance of replacing some

plans. It confirms the intuition of planning-based extensions to BDI agents, and encourages the

usage of new plans from advanced planning tools. With our plan library contraction operator, the

agent not only can drop the worst or oldest plans to increase its performance, but also protect the

fragility of the plan library by ensuring there are always other plans to replace deleted plans.

Finally, our instantiated plan library contraction operator in a planetary vehicle example (which

excludes the expansion operator) demonstrates the feasibility and applicability of plan library

contraction operator in our approach.
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6
EFFICIENT INTENTION PROGRESSION VIA PLANNING

The bulk of this chapter has been published online in [XMBL19].

6.1 Introduction

In the previous two chapters, we discussed the extensions of Belief-Desire-Intention (BDI) by

embedding planning to recover the execution failure to increase robustness, and adding or

deleting plans to adapt to the changing environment. Both of these extensions have tried to

overcome the drawbacks associated with the pre-defined plan libraries in the mainstream BDI

implementations. In other words, their primary focus is the plans in BDI agents. In this chapter,

we look at another issue related to intentions – a crucial part of BDI agents – which are one

of the least studied areas in BDI theory [HLPX17]. In particular, we will address the problem

of intention interleaving, where we are interested in identifying and exploiting overlapping

programs (e.g. common actions) between different intentions.

A desirable property of any agent-based system is that the system should be reactive in a

dynamic and complex domain. Such reactive nature requires the agent to be able to respond to

new events even while already dealing with other events. Indeed, one of the crucial features of

BDI agents is their ability to pursue multiple intentions in parallel, i.e. multitasking. To this end,

intentions are often executed in an interleaved manner. For example, the agent can execute one

step of an intention at each cycle in a round-robin fashion [BHW07]. However, the interactions

between interleaved steps in different intentions may result in conflicts, i.e. the execution of

a step makes it impossible to execute a step in another concurrent intention. Therefore, it is

critical for the agent to avoid negative interference between intentions, i.e. conflict resolution

[TPW03a, YL16], when an agent is pursuing multiple intentions in parallel. However, to avoid

execution inefficiency, the agent also should capitalise on positive interactions between intentions,
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in particular, the positive interactions when intentions overlap with each other. In this thesis,

we regard the intention progress which exploits the positive interactions as a form of efficient

intention progression regarding the cost of execution in BDI agents. Indeed, opportunities for

positive interactions between intentions can enable the agent to reduce the effort (e.g. resources)

it exerts to accomplish its intentions. For example, the agent with the overlapping intentions

can merge these intentions to reduce the actual overall execution cost. Such the mechanism

of intention merging effectively allows the agent to skip some of its plan steps in its plan, i.e.

kill two birds with one stone, while still managing to achieve all intentions. Finally, to avoid

any confusion, we stress that the notion of “efficient intention progress" in this thesis shall be

interpreted as an algorithm to reason how to accomplish intentions with as less actual resources

the agent needs as possible rather than a fast real-time algorithm which only reasons how to

progress intentions. In other words, our “efficiency” measures the physical cost when the agent

interacts with the external environment via action execution rather than the traditional sense of

the high speed of internal computational reasoning.

To illustrate the problem, consider a BDI implementation for a Mars Rover agent. The agent

has a goal to transmit soil experiment results and a goal to transmit image collection results.

The agent could perform the goals sequentially by establishing the connection with the Earth,

sending soil experiment results, breaking the connection, then establishing the connection with

the Earth, sending image collection results, and breaking the connection. Alternatively, it could

establish the connection with the Earth, send both the soil experiment and image collection

results, and break the connection. Clearly, the second approach specifies a kind of agent which

is able to discover and exploit the commonality of different intentions. Unlike the traditional

agent, such a type of agent is capable of manifesting a more sensible and intelligent behaviour

whenever appropriate. For example, a domestic Artificial Intelligence (AI) assistant can identify

the online order commands from the users and merge several separate orders into one order,

thus reducing the package receiving efforts for users. While, unlike conflict resolution, exploiting

commonality of intentions is not necessary for the agent to perform its tasks correctly, it can

be of vital importance in a resource-critical domain such as in the autonomous manufacturing

sector [SWH06] (in Section 6.4 we will present a manufacturing scenario of using machining

operations to make holes in a metal block).

Within the BDI community, there are few papers which address these issues. One motive for

this is that there has been a focus on a simple intention selection mechanism that favours highly

efficient reasoning cycle above all else as we have discussed in Section 3.4. Still, recently, a number

of approaches on dealing with positive interactions between multiple intentions in parallel have

been released. In works of [TPW03b, TP11], for instance, the authors propose a way to detect and

exploit positive intention interactions by reasoning about definite and potential preconditions and

post-effects of plans and goals. However, this approach is limited to intention merging at the plan

level to avoid duplicate plan executions, thus ignoring the merging of individual steps (e.g. actions)
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within plans. As a result, the approach needs to adopt a conservative strategy where the merging

is allowed if and only if the definite and potential effects of one plan is completely subsumed by

the others to preserve correct intention execution. However, some conflicts between intentions

may not be resolved by the appropriate ordering of plans and can only be resolved by appropriate

interleaving of steps within plans. Furthermore, post-effects are not commonly defined for plans

in BDI implementations and thus must be inferred, which prevents this approach from being

used in, e.g. domains pervaded by uncertainty.

Apart from the work of [TPW03b, TP11], we are not aware of any other existing work on

intention interleaving with the focus on discovering and exploiting identical sub-intentions in

BDI agents. There are also some other works which exploit the positive intention interaction for

intention resolution in BDI agents. For example, the work of [YLT16b] studied the robust execu-

tion of BDI agent programs by exploiting synergies between intentions. Instead of backtracking

to recover from an execution failure, they proposed an approach to appropriate scheduling the

remaining progressable intentions to execute an already intended action which re-establishes

a missing precondition. In contrast, we address the problem of intention resolution, where we

guarantee the achievability of intentions by avoiding all negative interaction between intention

in this work. Another noticeable work [WR11] combines work on both intention and planning.

However, their purpose is to split the original actions into several stages of intention (i.e. refine-

ment of action) to solve unary planning problems. In fact, a large number of works integrate

automated planning techniques into BDI agents to generate plans at runtime, as surveyed by

Meneguzzi and De Silva [MS15]. However, our work is one of the few which formally integrates

planning techniques into BDI agents to managing intention interleaving.

This leaves the agent with a brittle mechanism to detect potential overlapping intentions and

attempting to schedule its actions to take advantage of them. Instead, in this chapter, we show

that within a BDI context, as a high-level agent modelling language, many of these intention

issues can be resolved through planning in an automated fashion. We accomplish this by showing

how intentions (particularly the complete intention execution traces, each of which leads to the

successful execution of an intention) can be modelled as the search space of a PDDL problem

description [MGH+98]. Subsequently, planning is employed to identify a conflict-free (i.e. correct

execution) and maximal-merged (i.e. minimal effort) execution trace. The approach we introduce

is agnostic to the actual planner being used, thus implying our approach can be used with modern

highly efficient online planners (e.g. [KE12]) to execute plans until it is necessary to replan.

Furthermore, since we rely on third-party implementations, we immediately benefit from any

improvement made to these planners.

The contribution in this chapter is another extension to the BDI framework where planning is

used to exploit overlapping intentions while resolving conflicts during the interleaved execution

of intentions. To achieve so, we first formalise the intention of a BDI agent as an AND/OR

graph to capture the unique hierarchical structure of a plan library in Section 6.2.1. In the
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context of AND/OR graphs, we define the concept of execution traces of an intention to identify

every unique way in which a given intention can be achieved. When the agent is interleaving

different intentions, it is essentially interleaving elements in the execution traces of different

intentions. Therefore, the potential execution trace of a set of intentions can be constructed by

interleaving the execution traces of each intention. However, randomly interleaving intentions

may cause negative interactions to arise. To model the successful interleaving which achieves

all intentions, each element in the potential execution trace of a set of intentions cannot be

blocked right before its execution. Such an execution trace is called the conflict-free execution

trace. Regarding the positive interactions, we define the concept of mergeable execution trace to

capture the commonality of different intentions. Furthermore, we provide a method of computing

all potential overlapping programs among a set of intentions to identify such potential positive

interactions in Section 6.2.2. As a consequence, we are essentially transforming the problem of

intention interleaving in BDI agents to be a task of searching for a conflict-free and maximally

merged execution trace if there exists one. Therefore, it is natural for us to employ the planning

to search such a conflict-free and maximal-merged execution trace for the agent. To this end, we

provide a formal framework of applying planning to solve the problem of intention interleaving

in Section 6.2.3. In addition, we also provide the detailed instruction of implementations along

with necessary knowledge transformation between BDI agents and First-principles Planning

(FPP) in Section 6.3. Finally, to demonstrate the feasibility and effectiveness of our approach, we

present evaluation in manufacturing testbeds of increasing sizes in Section 6.4.

6.2 Intention Interleaving Planning Framework

In this section, we formally define the goal-plan trees to model the intentions of a BDI agent,

and we use these goal-plan trees in Section 6.2.1 to define the conflict-free and maximal-merged

execution traces of intentions. In Section 6.2.2 and Section 6.2.3, we outline a theoretical approach

where planning is used to manage the intention interleaving in a way that maximises the

intention merging while guaranteeing the achievability of all intentions.

6.2.1 Intention Formalisation

In BDI agent systems, the so-called goal-plan trees have been the canonical representation of

intentions [TP11]. The root of a goal-plan tree is a top-level goal, and its children are plans that

can be used to achieve such a top-level goal. Plans may also contain sub-goals, giving rise to a

tree structure representing all possible ways of achieving the goal. In this thesis, we also use it to

represent the underlying hierarchy in the plan library. Before we proceed with our framework, it

is stressed that the BDI language which we use in this thesis allows the various form of triggering

events, e.g. achievement goal and belief addition as discussed in Section 2.3.1. However, for the

reason of legibility, we unify all potential form of triggering events and symbolically represent
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them as goals, denoted G as a set of (sub)goals We now give the definition of a goal-plan tree [TP11]

which we formalise and simplify in this thesis. Let us recall that Π is a set of plans and Λ is a set

of actions. We can have the following definition of goal-plan tree for an intention:

Definition 12. A goal-plan tree for an intention in a BDI agent to achieve a top-level goal G ∈G
is an AND/OR graph T = (N∨∪N∧,L∨∪L∧,E∨∪E∧, n̄) where:

1. n̄ =G (i.e. the top-level goal);

2. N∨ ⊆G∪Λ (i.e. sub-goals or individual actions);

3. N∧ ⊆Π (i.e. plans to deal with goals);

4. L∨ =L (i.e. the logical language);

5. L∧ ⊆N+ where N+ is the set of positive integers;

6. (G,ϕ,P) ∈ E∨ if P ∈Π such that head(P)=G and context(P)=ϕ;

7. (G′,ϕ′,P ′) ∈ E∨ if there exists a path from G to G′ with G′ ∈ G such that P ′ ∈ Π with

head(P ′)=G′ and context(P ′)=ϕ′;

8. (P, j,h) ∈ E∧ if there exists a path from G to P with P ∈Π such that O(h,P)= j;

where head(P), context(P), and bod y(P) refers to the head, context condition, and plan-body of

a plan P, respectively, and O(h,P) denotes the plan-body order of a given component h in the

body of the plan P.

The root node of a goal-plan tree1 is the top-level goal specified by the criterion (1). Criterion

(2) and (3) assign the BDI components to the nodes. In detail, the set of (sub)goals and individual

actions are assigned to be OR-nodes, whereas the set of plans the AND-nodes. Criterion (6) and (7)

link a goal with its relevant plans using OR-edges which are labelled with the context condition

of the corresponding plan according to the criterion (4). Meanwhile, the criterion (8) links a plan

with its plan-body using AND-edges which are labelled with a natural number which indicates

the execution order shown in the criterion (5). For convenience, we refer to the component of

goal-plan tree T, e.g. T[n̄] for the top-level goal of T, and T[N] for both OR-nodes and AND-nodes

of T. To explain the concepts in Definition 12 above, we now present an example and graphical

illustration as follows:

Example 4. Let G1 and G2 be the goals of our Mars Rover to transmitting the soil experiment

results and transmitting the image collection results, respectively. We have plan P1 and P2 to

achieve G1 and G2, respectively, and they are given as follows:

1Note that despite still being called a goal-plan tree here, it does not satisfy the definition of a tree as there can
exist two nodes connected by more than one path due to multiple relevant plans for a (sub)goal.
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P1 =G1 :ϕ1 ← a1;a2;a4; P2 =G2 :ϕ2 ← a1;a3;a4;

where ϕ1 and ϕ2 are the context condition of P1 and P2, respectively. The action a1 (resp. a4)

stands for establishing (resp. breaking) the connection. Meanwhile, the action a2 (resp.a3) denotes

transmitting the soil experiment (resp. image collection) results. The corresponding goal-plan

trees are presented in Figure 6.1, which are constructed according to Definition 12 above.

G1

P1

a1 a2 a4

G2

P2

a1 a3 a4

: N∨
: N∧
: L∨
: L∧

T1 T2

ϕ1 ϕ2

1 2 3 1 2 3

Figure 6.1: AND/OR Graphs for Goal-plan Trees.

We have modelled the intention in a BDI agent via the structure of the goal-plan tree. Recall

that BDI agents typically pursue multiple goals in parallel through the interleaving of steps in

different intentions. We now look at the problem of intention interleaving in the context of goal-

plan trees. To begin with, we introduce the definition of the execution trace of a single intention,

which identifies every unique way in which a given intention can be achieved. Therefore, we can

have the following definition of an execution trace of a goal-plan tree for an intention:

Definition 13. Let T be a goal-plan tree for an intention. An execution trace of T is defined to

be τ(T)= τ(T(n̄)) such that the following condition hold:

1. τ(G)=G;τ(P) s.t. head(P)=G;

2. τ(P)= P;τ(h1); . . . ;τ(hn) such that body(P)= h1; ...;hn;

3. τ(a)= a;

where T(n̄) denotes the top-level goal of T, a,P,G ∈ T(N) (i.e. the set of AND/OR nodes of T). We

also denote the set of all execution traces of a goal G by ω(G), i.e. τ(G) ∈ω(G).

Definition 13 says that an execution trace of an intention is an execution trace of its top-level

goal. The condition (1) says that an execution trace of a goal is the sequence beginning with the

adoption of such goal followed by the execution trace of one of its relevant plans. Normally, a goal

in a BDI agent has more than one relevant plans, thus amounting to more than one execution

trace for a goal. The condition (2) says the execution trace of a plan consists of the plan identifier

followed by the trace of the individual elements of its body. The plan identifier in the execution

trace stands for the selection of the plan. We note that the plan selection and the execution of the
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first body element in a plan are distinct steps. In addition, the execution trace of the plan-body of

a plan preserves the order of its elements shown in (2). Finally, we can see that the execution

trace of action is trivially the action itself given in the condition (3). The following is an example

of execution traces of a goal-plan tree for an intention:

Example 5. Consider the goal-plan tree T3 given in Figure 6.2. We can see that it has two

execution traces, namely τ1(T3) and τ3(T3) as follows:

τ1(T3)=G3;P3;a4;a5; τ2(T3)=G3;P4;b4;b5;b6;

G3

P3

a4 a5

P4

b4 b5 b6

T3

Figure 6.2: A Goal-plan Tree with Two Relevant Plans.

So far we have defined the execution trace for a single intention. We are ready now to define

an execution trace of a set of intentions {T1, · · · ,Tm}, as a BDI agent is typically pursuing multiple

goals in parallel. Let us recall T j(n̄) is the top-level goal of T j and ω(T j(n̄)) is the set of all

execution traces of T j(n̄). We have the following definition:

Definition 14. An execution trace of a set of intentions {T1, . . . ,Tm} is any sequence σ obtained

by interleaving a finite number of execution traces from the set of
⋃m

j=1ω(T j(n̄)) such that

| {i |σ[i]= T j(n̄)} |= 1 where σ[i] denotes the ith element of σ and 1≤ j ≤ m.

Definition 14 says that the construction of an execution trace of a set of intentions is to

interleave elements in the execution traces of different intentions. Intuitively, the requirement

on the cardinality of the top-level goal of each intention says that each intention only needs to

be achieved once. Therefore, there is one and only one execution trace of each intention being

interleaved with the execution traces of other intentions. The following is an example of an

execution trace for a set of intentions:

Example 6. In Figure 6.1, we can have that the intention T1 has only one trace, namely

τ(T1) = G1;P1;a1;a2,a4. Meanwhile, there are two execution trace for intention T3, namely

τ1(T3) and τ2(T3) given in Example 5. Therefore, one possible execution trace of intentions

{T1,T3} can be σ = G1;P1;G3;P3;a1;a4;a2;a4;a5 by interleaving τ(T1) and τ1(T3), where the

subsequence in bold is τ(T1) and non-bold is τ1(T3), i.e. one of execution traces of T3 given

in Example 5.
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However, randomly interleaving intentions can cause negative interactions to arise. For

example, a previously achieved effect may be undone before an action that relies on it begins

executing, thus preventing that action from being able to execute. Therefore, to model the

successful interleaving which achieves all intentions (i.e. intention resolution), we now define the

concept of a conflict-free execution trace of a set of intentions as follows:

Definition 15. Let B j be the belief base before the execution of the jth element of an execution

trace (i.e. σ[ j]). An execution trace σ is conflict-free if and only if the followings hold:

(i) if σ[ j]= P ∈Π, then B j |= context(P) (i.e. the context of plan P must be met before selection);

(ii) if σ[ j]= a ∈Λ, then B j |=ψ(a) (i.e. the precondition of action ‘a’ must be met before execu-

tion).

where j ∈ {1, . . . , |σ|} and |σ| is the length of σ.

Definition 15 says that a conflict-free execution trace is an execution trace which can be fully

executed to completion without failure once it starts executing, thus avoiding all possible negative

interactions between intentions. In order for an execution trace to be completed without failure,

every element of such an execution trace cannot be blocked. For instance, the context condition of

a plan in the execution trace has to hold when the agent selects this plan. Similarly, the agent

cannot execute an action in the execution trace if its precondition does not hold before execution.

Besides the negative interactions between intentions, there may also exist potential positive

interactions between them. For example, there may be a common sub-intention of two intentions

that need only be executed once (i.e. merging such two identical sub-intentions into one) in order

to progress both these two intentions. Therefore, to capture the commonality of intentions in the

execution trace, we start with providing the following definition of the mergeable execution trace:

Definition 16. An execution trace σ of {T1, . . . ,Tm} is a mergeable execution trace if and only if

the followings hold:

(i) ∃ j ∈ {1, . . . , |σ|} such that σ[ j]= . . .=σ[ j+k] where |σ| is the length of σ and 2≤ k ≤ |σ|− j;

(ii) ∀l ∈ {1, . . . ,m},@s, t ∈ { j, . . . , j+k} where s 6= t such that σ[s]⊆ τ(Tl)⊆σ and σ[t]⊆ τ(Tl)⊆σ.

(iii) σm is a conflict-free execution trace where σm is the merged execution trace of σ by reducing

each subsequence consisting of consecutive identical elements characterised by (i) and (ii)

in σ to only one element.

In Definition 16, criterion (i) and (ii) first capture the synchronisation stage, which requires

different intentions ready to be executed the same actions at the same time. In the criterion (iii),

it formalises the intention merging stage such that the subsequent merged execution trace σm is

still a conflict-free execution trace, thus ensuring a correct execution.
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Example 7. In Figure 6.1, we can have that one of the execution traces of T1 and T2 is σ1 =
G1;P1;G2;P2;a1;a1;a2;a3;a4;a4. We can conclude that σ1 is mergeable according to Definition 16

and its merged execution trace σm
1 =G1;P1;G2;P2;a1;a2;a3;a4 is indeed a conflict-free execution

trace (see in the example discussed in Section 6.1).

Finally, we can define the following concept of maximal-merged execution trace to seeking the

maximal amount of intention merging if possible.

Definition 17. The merged execution trace σm of a mergeable execution trace σ of {T1, . . . ,Tm}

is maximal-merged if there is no another mergeable execution trace σ′ of {T1, . . . ,Tm} such that

|σ′m| < |σm| where |σ| stands for the length of σ.

At this stage, we have fully defined the execution trace of a given set of intentions. With

each set of intentions, we can now associate a (potentially large) set of execution traces, we are

interested in finding one maximal-merged trace for a set of intentions if one exists. To this end,

in the next section, we leverage the power of FPP to help us find such a maximal-merged trace.

6.2.2 Intention Interleaving Planning Preparation

In this section, we show that the off-the-shelf FPP planners can be applied to identify a maximal-

merged trace if one exists. Before we formally present our FPP approach to solving the problem

of intention interleaving, we start with some technical preparation.

Indexing nodes: We introduce some additional notations, i.e. indexes, to the nodes of goal-

plan trees. If a node n is a top-level goal of intention T, it is already uniquely identified by the

notation T(n̄). For nodes of action and sub-goals, i.e. n ∈Λ∪G\{T(n̄)} of T, we use nP, j,T to denote

the jth member of body(P) in T. This ensures that, e.g. the same action in distinct plans is seen

as different. Similarly, we use nT to denote a plan node n ∈ Π in an intention T. For ease of

reference, we denote J(idx) to retrieve the actual node of the index idx. From now on, we assume

that whenever we talk about the nodes, we refer to the indexes of these nodes.

Terminal and initial node set: We introduce the terminal node set for a goal node G ∈ G.

This set encodes the completion condition of the goal node, which is the last element of an

execution trace of a goal. To be precise, the terminal node set of a goal node G is defined to

be ν(G) = {τ(G)∞ | τ(G) ∈ ω(G)} where τ(n)∞ stands for the last element of execution trace

τ(n). Therefore, we can have zg = {tn1, . . . , tnm} to be a terminal node set of a set of intentions

I = {T1, . . . ,Tm}, denoted zg Btn I, where tn j ∈ ν(T j[n̄]) and j ∈ {1, . . . ,m}. When every element

in a terminal node set is reached for a set of intentions, we know that this set of intentions is

completed successfully. Similarly, the top-level goal of each intention in I = {T1, . . . ,Tm}, denoted

as z0 = {T1(n̄), . . . ,Tm(n̄)}, is called an initial node set of I. This set announces the starting point

of each intention. To illustrate the concepts of indexes and terminal and initial node set, we now

provide the following example with visualisation.
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Example 8. In Figure 6.1, we can have the indexes and terminal and initial nodes of execution

traces of intention T1 and T2 as follows:

τ(T1) :

 node G1 P1 a1 a2 a4

index T1(n̄) PT1
1 aP1,1,T1

1 aP1,2,T1
2 aP1,3,T1

4



τ(T2) :

 node G2 P2 a1 a3 a4

index T2(n̄) PT2
2 aP2,1,T2

1 aP2,2,T2
3 aP2,3,T2

4


initial node terminal node

Progression links: We introduce the concept of progression links to encode the progression

order information of the execution traces. To begin with, we first define the primitive progression

links to visualise the progression order of execution trace elements in the context of indexes.

Definition 18. Let σ be an execution trace. For every two adjacent elements with indexes n,n′

in σ (i.e. n;n′ ⊆σ), we say that an item in the form of (n → n′) is a primitive progression link in σ,

denoted as (n → n′) ∈σ.

Example 9. (Example 8 continued). We can have the progression links of execution trace τ1(T1)

and τ2(T2) shown as follows:

τ(T1) : (T1(n̄)→ PT1
1 ), (PT1

1 → aP1,1,T1
1 ), (aP1,1,T1

1 → aP1,2,T1
2 ), (aP1,2,T1

2 → aP1,3,T1
4 );

τ(T2) : (T2(n̄)→ PT2
2 ), (PT2

2 → aP2,1,T2
1 ), (aP2,1,T2

1 → aP2,2,T2
3 ), (aP2,2,T2

3 → aP2,3,T2
4 );

Computing overlaps: We have mentioned the potential common sub-intentions among

many different intentions. We now discuss how to compute all potential overlapping programs

among a set of intentions.

Definition 19. The overlap set of a set of intentions {T1, . . . ,Tm} (m ≥ 2) is a set of tuples of the

form 〈(idx1
b → idx1

e ), . . . , (idxk
b → idxk

e )〉 (2≤ k ≤ m) such that the followings hold:

(1) J(idx1
e )= . . .= J(idxk

e ) where J(idxi
e) stands for the actual node of the ending index idxi

e;

(2) ∀l ∈ {1, . . . ,m},@s, t ∈ {1. . . ,k} and s 6= t s.t. (idxs
b → idxs

e) ∈ τ(Tl) and (idxt
b → idxt

e) ∈ τ(Tl).

Definition 19 defines the concept of the overlap set which groups progression links from

different intentions that reach the same agent program. In detail, the criterion (1) requires that

there are same actual programs to be accomplished, whereas the criterion (2) ensures that these

same actual agent programs need to be achieved in the different intentions. The following is an

example to show what an overlap set looks like:
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Example 10. (Example 9 continued). The overlap set of intentions {T1,T2} has two elements (a)

and (b) as follows:

(a) 〈(PT1
1 → aP1,1,T1

1 ), (PT2
2 → aP2,1,T2

1 )〉 where J(aP1,1,T1
1 )= J(aP2,1,T2

1 )= a1.

(b) 〈(aP1,2,T1
2 → aP1,3,T1

4 ), (aP2,2,T2
3 → aP2,3,T2

4 )〉 where J(aP1,3,T1
4 )= J(aP2,3,T2

4 )= a4.

Proposition 3. Computing the overlap set of intentions can be done using at most an O(n!)×
O(n3 × log(n)) algorithm.

Proof. (sketch) Iterating all elements in a single execution trace of an intention is an O(n)

operation. Looking up the overlap between two execution traces is an O(log(n)) operation. Since

each intention may have more than one execution traces, looking up the overlap between two

intentions is an O(n ·n ·nlog(n))=O(n3log(n)) operation. The permutation of any two intention

is an O(n!) operation. Finally, the overall complexity is an O(n!) ·O(n3log(n)) operation. �

We note that the most naive implementation of the algorithm to compute the overlap set of

intentions can have factorial time complexity. However, the discussion of optimisation for such

an algorithm is out of the scope of this thesis. In Section 7.3 in Chapter 7, we will discuss the

potential existing optimisation techniques for handling the same level of complexity as the future

work.

To enable the BDI agent to merge the overlapping programs of a set of intentions, we now

define the concept of the overlap progression link to formalise the action of intention merging:

Definition 20. Let an element of overlap set of a set of intentions {T1, . . . ,Tm} (2 ≤ m) be

〈(idx1
b → idx1

e ), . . . , (idxk
b → idxk

e )〉 (2≤ k ≤ m). For such an element of overlap set, we can have a

corresponding overlap progression link ({idx1
b, . . . , idxk

b}→ {idx1
e , . . . , idxk

e }) ∈ {T1, . . . ,Tm}.

Definition 20 says that each element of the overlap set amounts to an overlap progression

link. Given an overlap progression link ({idx1
b, · · · , idxk

b}→ {idx1
e , · · · , idxk

e }), it essentially merges

all primitive progression links (idxi
b → idxi

e) and can progress from the (b)eginning indexes

idx1
b, · · · , idxk

b all the way to its (e)nding indexes idx1
e , · · · , idxk

e (2≤ k ≤ m).

Example 11. (Example 10 continued). The overlap progression links of {T1,T2} are (a′) and (b′)
for the two element of the overlap set (a) and (b), respectively, as follows:

(a′) ({PT1
1 ,PT2

2 }→ {aP1,1,T1
1 ,aP2,1,T2

1 }) for (a) 〈(PT1
1 → aP1,1,T1

1 ), (PT2
2 → aP2,1,T2

1 )〉;

(b′) ({aP1,2,T1
2 ,aP2,2,T2

3 }→ {aP1,3,T1
4 ,aP2,3,T2

4 } for (b) 〈(aP1,2,T1
2 → aP1,3,T1

4 ), (aP2,2,T2
3 → aP2,3,T2

4 )〉.

Finally, we introduce the size of an overlap progression link as the number of the primitive

progression links it merges. Given this quantitative measure of progression links, we can ensure

the agent to merge as many intentions as possible.
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Definition 21. Let an overlap progression link be αo = ({idx1
b, . . . , idxk

b} → {idx1
e , . . . , idxk

e }). We

say that the size of αo is size(αo)= k−1 (i.e. merging k−1 extra primitive progression links). By

default, the size of a primitive progression link αp is size(αp)= 0 (i.e. no merging at all).

We close this section by noting that what we have done so far is to make the preparations for

transforming the intention interleaving problem into an FPP problem. In particular, we introduce

the overlap progression links of a given set of intentions to formalise the intention merging. In

the following section, we will formally represent the intention interleaving problem as an FPP

problem and incorporate the overlap progression links in FPP to facilitate maximal intention

merging if possible.

6.2.3 Intention Interleaving Planning Formalism

In this section, we incorporate the overlap information in Section 6.2.2 in FPP to facilitate

intention merging. We now represent the problem of intention interleaving as an FPP problem.

Definition 22. An FPP problem of interleaving intentions I = {T1, . . . ,Tm} isΩ= 〈Σ, Nid,O, s0,SG〉
where:

• Σ is a finite set of (propositional) atoms;

• Nid =⋃m
j=1 T j(N∨∪N∧) is a set of node indexes of I;

• O =Op ∪Oo is a set of progression links.

• s0 =B0 ∪ zo ∈ 2Σ∪2Nid is the initial state;

• SG = {zg | zgBtn I}⊆ 2Nid is the goal state;

where Op (reps. Oo) denotes the collection of primitive (resp. overlap) progression links of a set of

intentions I while z0 (reps. zg) stands for the initial (reps. terminal) node set of I.

Definition 22 says an initial state s0 is a finite set of (propositional) atoms encoding an

initial belief base B0 and the initial node set z0 of intentions I, whereas the goal state SG

encodes the terminal node set zg of intentions I. The set of progression links O captures the state

transitions, e.g. the indexes in the execution traces. The progression link α ∈ O is of the form

〈pre(α),del(α),add(α)〉 where pre(α), del(α), and add(α) are called the precondition, delete-list,

and add-list, respectively. The precondition, delete-list, and add-list are sets of atoms and node

indexes in which the delete-list (resp. add-list) specifies which atoms and node indexes are

removed from (resp. added to) the state of the specification. Table 6.1 gives the Stanford Research

Institute Problem Solver (STRIPS) representation of primitive progression links in Op where

idxb is the beginning node index. For example, the progression link (idxb → PT ) in Table 6.1

captures the transition from idxb to a plan PT . The precondition of applying progression link
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(idxb → PT ) says that the context condition of PT is being met and the agent currently is at the

node idxb (i.e. idx∪ϕ ∈ pre(αp)). The progression link of (idxb → aP, j,T ) and (idxb →GP, j,T ) can

be similarly explained.

Table 6.1: STRIPS Progression Links

link αp pre(αp) del(αp) add(αp)

(idxb → PT ) idxb ∪ϕ {idxb} {PT }

(idxb → aP, j,T ) idxb ∪ψ(aP, j,T )φ−∪ {idx} φ+∪ {aP, j,T }

(idxb →GP, j,T ) idxb {idx} {GP, j,T }

Definition 23. Let an overlap progression link be αo = ({idx1
b, . . . , idxk

b}→ {idx1
e , . . . , idxk

e }) ∈Oo

where αp
i = (idxi

b → idxi
e) ∈Op (1≤ i ≤ k). We can have the precondition, delete-list, and add-list

of αo, namely 〈pre(αo),del(αo),add(αo)〉 such that the followings hold:

• pre(αo)= pre(αp
1 )∪ . . .∪pre(αp

k );

• del(αo)= del(αp
1 )∪ . . .∪del(αp

k );

• add(αo)= add(αp
1 )∪ . . .∪add(αp

k ).

Definition 23 confirms that the overlap progression link αo essentially merges related prim-

itive progression links α
p
i = (idxi

b → idxi
e) (1 ≤ i ≤ k) into one. Therefore, the precondition,

delete-list, and add-list of αo are the conjunction of precondition, delete-list, and add-list of αp
i ,

respectively.

Definition 24. The result of applying a progression link α ∈O to a state s =B∪ z is described by

the transition function f : 2Σ∪2Nid ×O → 2Σ∪2Nid defined as follows:

f (s,α)=
(s \del(α))∪add(α) if s |= pre(α)

undefined otherwise

Hence we have the result of applying a sequence of progression links to a state specification s

defined inductively:

Res(s,〈〉)= s

Res(s,〈α0; . . . ;αn〉)= Res( f (s,α0),〈α1; . . . ;αn〉)

We now formally define the solution to our planning problem of intention interleaving as follows:

Definition 25. A sequence of progression links ρ = 〈α0;α1; . . . ;αn〉 is a solution to a planning

problem Ω= 〈Σ, Nid,O, s0,SG〉, denoted as ρ = sol(Ω), iff Res(s0,ρ) |= SG . We also say that ρ is

optimal if the sum of the size of the progression link size(αi) is maximum where i = 0, . . . ,n.
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Definition 25 says the solution to a planning problem in Definition 22 is a sequence of

progression links ρ which, when applied to the initial state specification using the Res function,

reach a state that supports the terminal specification. The optimal solution is the solution which

not only accomplishes all intentions but also merges the highest number of primitive progression

links (see in Definition 21). To ensure that the optimal solution of intention interleaving planning

problem is indeed corresponding to maximal-merged execution of the same set of intentions, We

now formally establish the equivalence of these two.

Theorem 4. Let I = {T1, . . . ,Tm} be a set of intentions andΩ= 〈Σ, Nid,O, s0,SG〉 be its correspond-

ing intention interleaving planning problem. We have a maximal-merged trace σm of intentions

I = {T1, . . . ,Tm} if and only if there exists an optimal solution ρ to Ω.

Proof. Suppose that there exists a maximal-merged trace σm of intentions I = {T1, . . . ,Tm}.

Hence, σm is also a conflict-free trace according to Definition 16 and Definition 17. Therefore,

the terminal nodes of intentions I can be achieved. By the construction of the planning problem

Ω, we can infer that the goal state SG can be reached (i.e. there exists a solution). From Def-

inition 21, we can see that by definition the number of merged primitive progression links is

the size of a progression link, i.e. size(αi). Hence, there also exists an optimal solution accord-

ing to Definition 25. For the other side, let the optimal solution ρ be α0; . . . ;αn such that αi =
({idxi1

b , . . . , idxik
b }, {idxi1

e , . . . , idxik
e } where i = 0, . . . ,n and k = 1, . . . ,m. We can construct an execu-

tion trace σ in the following steps: (1) sequentialise αi into α′
i = idxi1

b ; . . . ; idxik
b ; idxi1

e ; . . . ; idxik
e ; (2)

remove any duplicate beginning indexes in σ=α′
0; . . . ;α′

n; (3) reduce subsequence idxi1
e ; . . . ; idxik

e

in σ into idxi1
e ; (4) retrieve the actual node of indexes in σ (see in Section 6.2.2). Finally, we can

say σ is maximal-merged by contradiction. To be precise, if σ were not maximal-merged, then we

would have ρ were not the optimal solution (which contradicts the assumption). �

So far, what we have discussed is known as offline planning, i.e. a complete plan is generated

and then executed in full. However, the environment is dynamic and pervaded by uncertainty. It

may imply that the change of the environment (e.g. exogenous events can occur) would block the

execution of the complete plan generated from FPP. For example, in a smart home environment,

there is an intelligent domestic robot which finished chores in the lounge and needs to move to the

hall doing chores. The robot chooses a plan which needs to pass through the hallway door to reach

the hall. However, the pet dog accidentally slammed the door shut before the robot reaches the

hallway door. As a consequence, this plan would be undesirably blocked. In BDI agents, when an

execution failure occurs, the agent will backtrack to the related motivating goal and tries another

applicable plan to achieve such a goal. Therefore, different from the classical replanning which

replanning takes place right from the current state where the execution failure happens, the BDI

agent propagates the failure to its higher-level goal first. Therefore, for intention interleaving

replanning, we need the prefix steps which backtracks to the higher-level goal and modifies the
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initial node. The steps of replanning are given in Algorithm 2 in which, e.g. line 5-7 instruct the

procedures for failure backtracking and initial node state modification.

Example 12. In Figure 6.2, if the agent is currently at the node a4 and is no longer able to

progress to a5 (e.g. the environment changed unexpectedly). Then the agent should go back to its

motivating goal G3 and start replanning from there. Correspondingly, for its planning problem Ω

the initial state s0 =B0 ∪ {a4} updates to s0 =B0 ∪ {G3} for replanning.

Algorithm 2: Intention Interleaving Replanning
Input: Planning problem Ω= 〈Σ, Nid ,O, s0,SG〉

1 α0; . . . ;αn ← sol(Ω) /* FPP solution */
2 i ← 0,α←α0, s ← s0 /* initialisation */
3 while s ∉Υ do
4 if f (s,α)= undefined then
5 idxb ←BEGINNING-INDEX(α)
6 G ←BACKTRACK(idxb) /* backtrack */
7 s0 ←B∪ z \{idxb}∪ {G} /* modify state */
8 sol

′
(Ω)←FPP(〈Σ, X ,O, s0,SG〉) /* replan */

9 α0; . . . ;αn ← sol
′
(Ω)

10 α←α0, i ← 0 /* re-initialisation */

11 EXECUTE α

12 s ← f (s,α)
13 i ← i+1
14 α←αi+1

6.3 Intention Interleaving Planning Implementation

In this section, we provide the practical implementation of our FPP approach in Planning Domain

Definition Language (PDDL) representation [MGH+98] which consists of two parts: (i) an operator

file which contains the STRIPS-like progression links; (ii) a fact file which encodes the initial/goal

state description.

Operator File: We start with encoding the primitive progression link in PDDL in an op-

erator file, namely (idxb → PT ), (idxb → aP, j,T ), and (idxb → GP, j,T ) according to Table 6.1

in Section 6.2.3. Note PDDL definitions require predicates. For legibility of presentation, however,

we simply use the relevant mathematical symbols as syntactic sugar. Therefore, we can have the

following list of actions in PDDL.

(:action (idxb → PT)

: precondition (and idxb context(P) )

: effect (and (not idxb) PT))

(:action (idxb → aP, j,T)

: precondition (and idxb ψ(aP, j,T ) )

: effect (and (not φ−) φ+ (not idxb) aP, j,T))
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(:action (idxb →GP, j,T)

: precondition idxb

: effect (and (not idxb) GP, j,T))

We now encode the overlap progression links in PDDL in an operator file. Let an overlap

progression link be αo = ({idx1
b, . . . , idxk

b}→ {idx1
e , . . . , idxk

e }) where the primitive progression link

α
p
i = (idxi

b → idxi
e) (1≤ i ≤ k). Therefore, we have the following:

(:action ({idx1
b, . . . , idxk

b}→ {idx1
e , . . . , idxk

e }))

: precondition (and pre(αp
1 ) . . . , pre(αp

k ) )

: effect (and add(αp
1 ) . . .add(αp

k )

(not del(αp
1 ) ) . . . (not del(αp

k ) )

(increase (efficiency-utility) size(αo)))))

where the syntax (increase (efficiency-utility) size(αo)) specifies the reward of the pro-

gression link to be its size (i.e. increase size(αo) so-called total-efficiency2). We also note that

despite that PDDL language supports both of minimisation and maximisation, most planners

only support the minimisation while in our work, we use maximisation. Therefore, in practice, we

overcome this issue by assigning the primitive progression link with the highest value. Depending

on how many extra primitive progression links an overlap progression link merges, the value of

the overlap progression link decreases correspondingly.

Fact File: The fact file includes the initial state description and the goal state description.

We start by declaring the objects present in the planning problem instance. The objects consist of

all indexes of elements of all execution traces besides other ground belief atoms.

(:objects ∀x ∈ X , ∀ BELIEF_ATOMS ∈Σ)

The initial condition consists of initial belief base B0 and the top-level goals of intentions.

(:init B0, ∀T ∈ I, T(n̄))

The goal for the planning problem is to reach any terminal node of each intention in {T1, . . . ,Tm}.

(:goal (and (or tn1
1 . . . tn1

k1
) . . . (or tnm

1 . . .tnm
km
))

where {tn j
1, . . . , tn j

k j
} ((1≤ j ≤ m)) is the terminal node set of the intention T j and the syntax ‘or’

means that reaching any of the terminal nodes {tn j
1, . . . , tn j

k j
} would achieve the intention T j (i.e.

:disjunctive-preconditions requirement in PDDL).

Finally, we show how to obtain a maximal-merged execution trace through the optimisation

in PDDL. To do so, we add a fluent function (:function(efficiency-utility)) to keep track

of the efficiency utility with an initial efficiency utility specification (=(efficiency-utility)0).

Then we add a :metric section to the fact file with (:metric maximise(efficiency-utility))

to specify that maximising the sum of efficiency-utility is the objective.

2It is noted that the vast majority of state-of-the-art planners only support syntax total-cost. For readability,
we still use the syntactic sugar efficiency-utility for self-explanatory purpose.

114



6.4. INTENTION INTERLEAVING PLANNING EVALUATION

Table 6.2: Effectiveness Analysis of Approach

2.1 2.2 3.1 3.2 3.3 4.1 4.2 4.3 4.4

2 17% 33% 11% 22% 33% 8% 17% 25% 33%

3 22% 44% 15% 30% 44% 11% 22% 33% 44%

4 25% 50% 17% 33% 50% 13% 25% 38% 50%

5 27% 53% 18% 36% 53% 13% 27% 40% 53%

6 28% 56% 19% 37% 56% 14% 28% 42% 56%

7 29% 57% 19% 38% 57% 14% 29% 43% 57%

8 29% 58% 19% 39% 58% 15% 29% 44% 58%

6.4 Intention Interleaving Planning Evaluation

In this section, we present some preliminary effectiveness results to show the feasibility of our

approach. Consider a manufacturing scenario of using machining operations to make holes in a

metal block. There are several different kinds of hold-creation operations (e.g. twisting-drilling

and spade-drilling) available, as well as several different kinds of hole-improvement operations

(e.g. reaming and boring). Each time the robotic arm switches to a different kind of operation

or to a hole of different diameter, it must mount a different cutting tool on its arm. If the same

cutting operation is to be performed on two (or more) holes of the same diameter, then these same

operations can be merged by omitting the repetitive task of changing the cutting tools.

We generate such manufacturing scenarios in which the detailed design were varied by: (i) the

number of blocks (n from 2 to 8); (ii) operations per blocks (m from 2 to 4), and (iii) the maximal

number of overlap operations among all metal blocks (k from 1 to 4), resulting in 63 test cases

in total. We assume that each operation has three actions, e.g. twisting-drilling task needs (i)

action of taking on a twisting-drill, (ii) actual twisting-drilling action, (iii) action of taking off

this twisting-drilling. For simplicity, the shared operations among a set of blocks are in the same

order in each metal block. For example, if block 1 and block 2 share both twisting-drilling and

reaming operation, we would expect the twisting-drilling operation before reaming operation in

both blocks in practice. The dataset and instructions for reproduction are available online3. These

cases were then solved via our FPP approach where a planner called Metric-FF4 is employed.

Table 6.2 shows the effectiveness results of our approach where rows are the number of metal

blocks n from 2 to 8 and columns m.k reads as there are m operations among which there are k

overlapping operations. Compared to the default approach without capitalising on overlapping

operations, our FPP approach not only successfully achieves all the intentions, but also reduces

3https://github.com/Mengwei-Xu/manufacturing-evaluation
4https://fai.cs.uni-saarland.de/hoffmann/metric-ff.html
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the amount of repetitive task of changing the cutting tools. The value in the table is the improved

efficiency defined as the reduced number of actions divided by the total number of actions if

without merging identical operations. For example, if there are 4 metal blocks, 3 operations for

each metal, and 2 overlapping operations over these 3 operations, our approach can improve the

efficiency by 33%, i.e. reducing 12 repetitive changing tool actions out of 36 actions in total if

without intention merging. We also observe the efficiency to increase with the number of blocks

(see in each column). When all operations for all blocks are the same, the efficiency is the same

regardless of the number of blocks (see the same efficiency values in column 2.2, 3.3, and 4.4).

6.5 Conclusion

In this chapter, we have developed mechanisms that manage the interactions between the

intentions of an agent in a rational manner. Specifically, we employ an off-the-shelf FPP planner

to address the problem of the concurrent intention executions in BDI agents. In spite of at

least the PSPACE complexity of FPP, the past several decades have witnessed the tremendous

progress in the planning community in which large planning problems can be solved in the real

time [GB13]. Furthermore, our approach of treating the planner as a black box allows us to

immediately harvest from any ongoing performance improvement made to these planners. Since

these intentions can interact with each other both positively and negatively, our planning-centric

approach to BDI agents can also avoid negative interactions while facilitating positive interaction.

To do so, it guarantees the accomplishment of intentions by finding a conflict-free execution trace

among a set of intentions modelled as a goal-plan tree. Regarding the positive interaction, we

focus on a specific type of positive interaction, namely identical sub-intentions among different

intentions. To identify and facilitate such positive interaction, we introduce the concept of overlaps

and incorporate it into FPP to minimise the cost of execution via merging identical sub-intentions,

thus improving the overall execution efficiency of the BDI agents. Furthermore, the mechanism

we developed to manage the interactions between intentions is in a domain-independent way,

which can be integrated into the infrastructure of agent development systems. Our manufacturing

experiment results indicate the effectiveness of our approach when compared to BDI agents

that do not harness the advantages of commonality between intentions. Therefore, integrating

our approach into practical agent systems allows building agents that are more sensible and

productive in the way they pursue concurrent intentions.
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CONCLUSION

In this thesis, we have addressed the dissatisfaction related to features of the execution robust-

ness, environment adaptivity, and intention progression efficiency in the current approaches to

Belief-Desire-Intention (BDI) agents. Firstly, the deficiency in execution robustness can hamper

the ability of a BDI agent to cope with failure during executing, thus limiting its applicability

when, e.g. no pre-defined plan either worked or exists. Secondly, the absence of adaptivity further

prevents the long-term employment of a BDI agent in an environment which changes over time.

Thirdly, the deficit in execution efficiency of BDI agents renders themselves less-received by

manufacturing sectors which operate in a resource-critical domain. To address the lack of these

features in BDI agents, this thesis has been devoted to building towards BDI agents within a

classical BDI agent programming language, namely Conceptual Agent Notation (CAN), which can

(i) create new plans when either no pre-defined plan worked or existed to achieve goals; (ii) adapt

to a fast-changing environment with a plan library evolution architecture with a mechanism to

incorporate new plans and drop old or unsuitable plans; (iii) think ahead to not only guarantees

the achievability of intentions, but also reduce the overall cost of intention execution by exploiting

potential common sub-intentions.

7.1 Planning in BDI

In Chapter 4, we embedded First-principles Planning (FPP) in a popular BDI language, namely

CAN agents, in a way that reuses and respects the procedural domain knowledge in the plan

library. To do so, we partition the original intention set of a BDI agent into the procedural inten-

tion and declarative intention set. Such a partition retains the standard procedural intentions

for the normal BDI reasoning while enabling the new declarative intention set to be achieved

by FPP. Also, a novel concept of pure declarative goal for FPP, namely goal(ϕs,ϕ f ), is inspired
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by the existing normal declarative goal, i.e. goal(ϕs,P,ϕ f ). This pure declarative goal for FPP

succinctly articulates what FPP should achieve and when it should halt. We then incorporate

FPP into the CAN languages. Unlike any other previous attempts which integrate FPP with BDI

agents in a rigid or ad-hoc style, our approach defined a comprehensive operational semantics

that specifies the behaviours of a BDI agent along with an FPP on-demand. This operational

semantics intuitively specifies when and how the FPP can be utilised for the benefits of BDI

agents in both offline and online settings. Furthermore, we have theoretically demonstrated the

intuitive expectation of integration of BDI and FPP. Our feasibility case also showed that the

combined architecture nicely obtains the key advantages of both BDI and FPP in a well-balanced

manner, i.e. the improvement of the scalability of the existing BDI agents and insurance of

maximum reactiveness for most of the standard procedural intentions.

In Chapter 5, we looked at the long-term employment of planning-extended BDI agents

which have the ability to reuse plans when similar goals need to be achieved, and to improve

domain knowledge using past experience. To achieve so, we presented our preliminary theoretical

exploration of adaptive BDI agents which can be well-suited in a fast-changing and uncertain

environment. In order to be more adaptive, we enabled a BDI agent to reason about the plan

library to add and remove plans. In this way, a BDI agent can incorporate new plans and remove

old ones based on their performance and the structure of plans. Our proposal also defined

these performance and structural properties of plans that can be used to formalise plan library

modification. The plan library modification consists of extension (i.e. adopt new plans) and

contraction (i.e. delete old plans) of the plan library, and plan library expansion and extraction

are performed when necessary. Finally, we presented and instantiated a specific contract operator

which we proved satisfying our postulates.

In conclusion, the challenges of embedding in BDI agents ultimately lies in the richness

of the interactions between BDI agents and the environment in which they are situated. If

the environment is always cooperative, the agent, in theory, should be able to complete its

intentions without any problems. However, the environment is often dynamic and uncertain

in real-life applications. Meanwhile, the technical difficulties of embedding in BDI agents first

come from identifying the appropriate triggers of planning, and then the proper management

of the execution of plans generated by the planner(s) in the context of existing agent programs.

In our approach here, the triggers of planning are focused on two types of events, namely plan

failure and new opportunities. In the case of plan failure detection, planning mostly does “plan

repair” to ensure the execution applicability to be restored for the blocked plans. For opportunity

recognition, what our approach enables is essential to allow the agent to pursue a goal which

is scheduled to pursue, but can only be pursued when some condition holds. The contribution

of evolving the knowledge of the BDI agents comes right naturally to utilise the pre-cached

plans generated by the planner(s) throughout the agent employment phase. Once the rationale

of expansion of new knowledge is established, the knowledge contraction follows naturally. Our
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approach of plan library evolution, to some extent, is rather focused on the principles of such a

plan library modification process rather than, e.g. the actually methods of transforming the plans

from planning to BDI plans. Of course, it is no doubt that the methods of converting the plans

from planning to most suitable BDI plans remain a vital – albeit challenging – research problem.

We will elaborate it in slightly more details in Section 7.3.

7.2 Managing Multiple Intentions

In Chapter 6, we looked at a different scenario when the agent is pursuing multiple intentions. As

we have shown, these intentions can interact either negatively when the interactions cause one or

more goals to fail, or positively when there are the overlaps between intentions. Managing these

interactions is difficult in BDI paradigm as it is generally not possible to decide which plans to

use in advance as they depend on (dynamic) environment conditions. For example, a non-conflict

plan selected at the current step may cause the problem later on. However, it is desirable for an

intelligent agent to act on various intentions in an interweaving manner. Therefore, an agent

should consider these interactions and be rational in the way it pursues its intentions. To do so, we

have shown that the task of intention interleaving can be managed by FPP in an automated style.

We started with formalising the underlying hierarchy of a plan library into an AND/OR tree. In

the context of AND/OR tree, we transformed the problem of desirable intention interleaving into

a path-finding problem. In detail, the requirement of avoiding negative interactions is equivalent

to obtaining a conflict-free trace of a set of intentions. Meanwhile, merging the overlapping

intentions becomes the task of searching for a maximal-merged trace. After this transformation,

off-the-shelf FPP tools can be used to identify, e.g. a conflict-free trace. Finally, our evaluation in

a manufacturing scenario demonstrates the effectiveness of our approach when compared to BDI

agents that do not harness the advantages of commonality between intentions.

In conclusion, it is expected and indeed, a key feature of any reactive agent to pursue multiple

intentions. To be considered intelligent, an agent should be sensible and smart in the way it

pursues its multiple intentions. Of course, the least which the agent should do is to ensure

that all of its multiple intentions should be achieved in the end. In our approach, on the top of

securing the achievability of multiple intentions by default, we advance it on the exploitation of

synergy among multiple intentions. Such a focus can be metaphorically captured by the saying of

“killing two birds with one stone". Indeed, our approach is beneficial, in particular, in the domain

where the resource is limited, and there are similar but yet slightly different tasks going on. To

achieve so, a large part of work is devoted to identifying the potential opportunities exploitation

of synergy. Therefore, some level of computational effort needs to be asserted beforehand to secure

some level of execution efficiency (through facilitating synergy) as a fair exchange. Also, since

the new intentions will still be committed in an online fashion, it implies that the identification

of potential synergy exploitation should be made online too. Some insights into future work are
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given in Section 7.3.

7.3 Discussion and Future Work

In Chapter 4, although the functionalities and behaviours of planning can generic in BDI agents,

the semantics that we have developed only applies to a specific type of BDI agents, namely

AgentSpeak and CAN. It implies that a different type of BDI agent (e.g. Artificial Autonomous

Agents Programming Language (3APL)) may need a new set of semantic rules. Therefore, firstly

it seems both natural and plausible to investigate the new semantics of planning for other popular

BDI agent frameworks as the future work. Secondly, despite the existence of a prototype-like

feasibility study of the combined FPP and BDI system, the development of full implementation

and its thorough evaluation are not available. Indeed, such a full implementation would amount

to a considerable amount of (pure) software engineering work. The current potential software

design would be as follows. On the BDI side, the current BDI reasoning cycle itself needs to

be minimally modified when the execution failures occur according to the new semantic rules.

Outside of BDI agents, when a pure declarative goal is generated, it can be bound to an API

which first transforms the current beliefs and plan library into Planning Domain Definition

Language (PDDL) files which then are passed to a planner to solve. The consistency management

of declarative intention itself can be all defined similarly to the belief base. Furthermore, a full

evaluation of any implementation would require a problem setting considerably larger than our

domestic robot scenario. Therefore, before any evaluation, a large set of problem cases should be

collected. The current existing International Planning Competition (IPC) planning problem set

can be a good starting point for the planning problem to which a planner can solve to recover the

related failure recoveries of BDI agents.

In Chapter 5, the framework arguably serves as a purely theoretical study of desirable

properties of plan library expansion and contraction for BDI architecture. Therefore, the next

step for this work is to check the presented ideas are practically realisable. For example, there is

no concept of the time points in most existing BDI platforms. However, a quick solution to this

time point problem can be the natural number of reasoning cycle of a BDI agent. Also, not only do

time and space complexity of various measures in this work need to be further investigated, but

also their corresponding complete and tractable algorithms need to be presented. Furthermore,

the current framework remains agnostic regarding when the plan library evolution should start.

Ideally, an autonomous agent should be able to maintain its knowledge base on its own. Therefore,

a comprehensive triggering mechanism for plan library evolution is a promising line of future

work. Finally, provided the integration of FPP in BDI agents in Chapter 4 agents, it is worthwhile

investigating how to transform the plan generated by a planner into a suitable BDI plans for

recovering the similar failure if it occurs again in the future. A promising venture would be the

case-based planning [Spa01] which specialises in the reuse of past successful plans in order to
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solve new planning problems.

In Chapter 6, although generic, our approach of employing planning to manage the intention

progression does come with some restrictions to the type of BDI agents for applications. First,

we do not allow that there is a loop in the plan library. Such a loop would cause an infinitely

long path. Secondly, despite supporting the concurrent pursue of multiple intentions, the current

approach does not allow the parallel plan program in each intention, thus no nested-concurrence.

Thirdly, the mechanism also does not consider other forms of subgoals such as maintenance goals

(e.g. maintaining a belief true for a duration of time). For the future work, the work of [YTS17]

sheds light upon the loops in the plan library. Regarding the maintenance goal, they effectively

put constraints on the belief base of the agent for a certain amount of time. Therefore, the concept

of state-trajectory constraints in planning community would be a good start point to realise

the maintenance goal. Intuitively, the state-trajectory constraints are hard-constraints in the

form of logic expressions, which should be true for the state-trajectory produced during the

execution of a plan, which is a solution of the given planning problem. There is another limitation

in this work regarding the computation of overlap sub-intentions among a set of intentions. A

naive implementation of the algorithm to compute the overlap set of intentions has factorial

time complexity. For future work, we believe the algorithm can be improved to incorporate

hashing ideas, such as in [Ert17], to make the algorithm viable for large scale problems. Finally,

a thorough evaluation of the costs and benefits of our approach also needs to be done empirically

in a wider range of applications.
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