
Science of Computer Programming 215 (2022) 102760
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Modelling and verifying BDI agents with bigraphs

Blair Archibald, Muffy Calder, Michele Sevegnani, Mengwei Xu ∗

School of Computing Science, University of Glasgow, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 February 2021
Received in revised form 24 November 2021
Accepted 29 November 2021
Available online 3 December 2021

Keywords:
BDI agents
Modelling
Verification
Bigraphs

The Belief-Desire-Intention (BDI) architecture is a popular framework for rational agents;
existing verification approaches either directly encode simplified (e.g. lacking features like
failure recovery) BDI languages into existing verification frameworks (e.g. Promela), or
reason about specific BDI language implementations. We take an alternative approach and
employ Milner’s bigraphs as a modelling framework for a fully featured BDI language, the
Conceptual Agent Notation (CAN)—a superset of AgentSpeak featuring declarative goals,
concurrency, and failure recovery. We provide an encoding of the syntax and semantics of
Can agents, and give a rigorous proof that the encoding is faithful. Verification is based
on the use of mainstream software tools including BigraphER, and a small case study
verifying several properties of Unmanned Aerial Vehicles (UAVs) illustrates the framework
in action. The executable framework is a foundational step that will enable more advanced
reasoning such as plan preference, intention priorities and trade-offs, and interactions with
an environment under uncertainty.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The Belief-Desire-Intention (BDI) [1] architecture is a popular and well-studied rational agent framework and forms the
basis of, among others, AgentSpeak [2], An Abstract Agents Programming Language (3APL) [3], A Practical Agent Program-
ming Language (2APL) [4], Jason [5], and Conceptual Agent Notation (Can) [6]. In a BDI agent, the (B)eliefs represent what
the agent knows, the (D)esires what the agent wants to bring about, and the (I)ntentions those desires the agent has chosen
to act upon. BDIs have been very successful in many areas such as business [7], healthcare [8], and engineering [9].

The deployment of autonomous systems in real-world applications raises concerns of trustworthiness and safety, for ex-
ample in scenarios such as autonomous control in space [10] and human-robot interaction in healthcare [11]. There is a
growing demand for verification techniques to aid analysis of behaviours in increasingly complex and critical domains, and
there has been a proliferation of techniques and languages supporting BDI agent verification. Most of these approaches ei-
ther i) encode simplified, e.g. lacking features like failure recovery, BDI languages directly into verification frameworks/model
checkers, for example, translating a simplified AgentSpeak language [12] into Promela/Spin [13,14] (no translation proof
given) or ii) focus on verifying a specific implementation of a BDI programming language, for example the Agent Infrastruc-
ture Layer (AIL) [15] implements a BDI language as a set of Java classes that can be verified with the Java PathFinder [16]
program model checker. While verifying an implementation tells you how the system will operate, it might not correspond
to how it should operate with respect to the semantics of the given BDI programming language.

* Corresponding author.
E-mail addresses: blair.archibald@glasgow.ac.uk (B. Archibald), muffy.calder@glasgow.ac.uk (M. Calder), michele.sevegnani@glasgow.ac.uk (M. Sevegnani),

mengwei.xu@glasgow.ac.uk (M. Xu).
https://doi.org/10.1016/j.scico.2021.102760
0167-6423/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2021.102760
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2021.102760&domain=pdf
mailto:blair.archibald@glasgow.ac.uk
mailto:muffy.calder@glasgow.ac.uk
mailto:michele.sevegnani@glasgow.ac.uk
mailto:mengwei.xu@glasgow.ac.uk
https://doi.org/10.1016/j.scico.2021.102760

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
Fig. 1. Modelling and verification framework for BDI agents.

We present an approach for reasoning about the semantics of a fully-fledged BDI programming language—with the
implementation of a faithful semantics encoding and incorporation of some advanced BDI features—through a mathematical
model of agent execution, i.e. verified executable semantics.

Our approach models and verifies BDI agents, specified in the Can language, by encoding them as an instance of Milner’s
Bigraphical Reactive Systems (BRS) [17]. Can features a high-level agent programming language that captures the essence
of BDI concepts without describing implementation details such as data structures. As a superset of AgentSpeak, Can in-
cludes advanced BDI agent behaviours such as reasoning with declarative goals, concurrency, and failure recovery. Importantly,
although we focus on Can, the language features are similar to those of other mainstream BDI languages and the same
modelling techniques would apply to other BDI programming languages.

Bigraphs provide a meta-modelling framework, developed as a unifying theory for calculi, e.g. π -calculus [18], with
extensions for priority and conditional rewriting [19,20]. As a graph-based rewriting formalism, over rules called reaction
rules, bigraphs not only provide an intuitive diagrammatic representation, which is ideal for visualising the execution process
of Can, but also offer compositional reasoning via explicit abstractions (sites/regions/names), customised rewriting rules, and
multiple ways to relate entities (placement and linking). While rewriting based approaches have previously been used for
agent systems [21], they are based on term, rather than graph, rewriting.

For analysis, BigraphER [19] is a freely available tool including rewriting, verification based on bigraph patterns, and
transition system export to model checking tools [22].

Our bigraph encoding of the Can language includes: i) a structural encoding that maps the syntax of Can (e.g. beliefs,
plans, and intentions) into equivalent bigraphs, and ii) an encoding of the operational semantics of Can as a set of reaction
rules. We provide a correctness proof that the translation of Can semantics into reaction rules is faithful.

The framework is depicted in Fig. 1. On the left we have the BDI agents and agent requirements – logical formulas. In
the middle, Modelling, the agents are translated into bigraphs that capture the structural elements and reaction rules that
capture their dynamics. Once we have encoded the agent into bigraphs, we use the model to perform verification (on the
right) of user-specified agent requirements. Verification takes two forms: checking static properties of a state (the current
bigraph representing an agent at some point in its execution) through bigraph patterns, and checking dynamic properties,
expressed as temporal logic properties, against the transition system generated by BigraphER. Finally, the user can employ
BigraphER simply to “run” their agent model with different initial settings.

We illustrate the framework with a small case study based on Unmanned Aerial Vehicles (UAVs).
We make the following contributions:

• an encoding of the Can language and operational semantics in bigraphs, using regions to represent the perspectives of
Belief, Desire, Intention, and Plan,

• proof that the encoding is faithful by showing each Can semantic rule is encoded by a (finite) sequence of reaction
rules,

• an illustration of our framework in a UAV case study,
• a reflection on Can based on insights gained from the encoding and also reflections on the experience, both theoretical

and practical, of bigraphs as an approach to reason about agent programming languages—and programming languages
more generally,

• an overview of how we will build upon this foundation in the future to reason about plan selection, intention tradeoffs
and priorities, and interactions with an uncertain environment.
2

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
The paper is organised as follows: in Section 2, we recall preliminaries of BDI agents in the Can language and bigraphs;
in Section 3, we provide the structural encoding that maps the syntax of Can into equivalent bigraphs; in Section 4, we
present a comprehensive review of the core semantics of Can (excluding concurrency and declarative goals) and, in par-
ticular, how the operation of Can semantics can be viewed as AND/OR trees. In Section 5 we encode the semantics given
in Section 4 and in Section 6, we present the semantics for concurrency and declarative goals and provide their bigraph en-
codings. In Section 7, we illustrate our framework with examples and in Section 8, we reflect on aspects of Can. In Section 9
we discuss related work; in Section 10 we lay out our plans for future extensions to this work; we conclude in Section 11.

2. Preliminaries

We give an overview of BDI agents, described in the Conceptual Agent Notation (Can) language, as well as Bigraphs and
Bigraphical Reactive Systems (BRS).

2.1. BDI agents

A BDI agent has an explicit representation of beliefs, desires, and intentions. The beliefs correspond to what the agent
believes about the environment, while the desires are a set of external events that the agent can respond to. To respond to
those events, the agent selects an appropriate plan (given its beliefs) from the pre-defined plan library and commits to the
selected plan by turning it into a new intention.

Can is a superset of AgentSpeak [2] featuring the same core operational semantics, along with several additional ap-
pealing features: declarative goals, concurrency, and failure handling. In the following, we introduce the syntax of Can, the
semantics is given in Section 4.

A Can agent consists of a belief base B and a plan library �. The belief base B is a set of formulas encoding the current
beliefs. Without loss of generality, we specify our belief base following the logical language in AgentSpeak [2] that takes
the form ϕ ::= b | ¬b | (ϕ1 ∧ ϕ2) | true | false (where b denotes a ground belief atom). More complex logics are possible but
are outwith the scope of this paper, i.e. we show how to encode general BDI agents in bigraphs, not how to encode specific
logics. All that we assume for any chosen logical language is that it has belief operators to check whether a belief formula
ϕ follows from the belief base (i.e. B |= ϕ), to add a belief atom b to a belief base B (i.e. B ∪ {b}), and to delete a belief
atom from a belief base (i.e. B \ {b}).

A plan library � contains the operational procedures of an agent and is a finite collection of plans of the form Pl = e :
ϕ ← P with Pl the plan identifier, e the triggering event, ϕ the context condition, and P the plan-body. The triggering event
e specifies why the plan is triggered, the context condition ϕ determines when the plan-body P is able to handle the event.
We denote the triggering event of a plan Pl trigger(Pl) and we call E = {trigger(Pl) | Pl ∈ �} the event set that the agent
knows how to respond to (i.e. it has plans for response – though it might be the case none are applicable). For convenience,
we call the set of events from the external environment the external event set, denoted Ee . Finally, the remaining events
(which occur as a part of the plan-body) are either sub-events or internal events.

By convention (e.g. in [5]), the set of plan-bodies P in a plan Pl = e : ϕ ← P may be referred to as the program or agent
program and has the following syntax:

P ::= act | ?ϕ | + b | − b | e | P1; P2 | P1 ‖ P2 | goal(ϕs, P, ϕ f)

with act an action, ?ϕ a test for ϕ entailment in the belief base, +b and −b represent belief addition and deletion, and e is
a sub-event (i.e. internal event). To execute a sub-event, a plan (corresponding to that event) is selected and the plan-body
added in place of the event. In this way we allow plans to be nested (similar to sub-routine calls in other languages). Actions
act take the form act = ϕ ← 〈φ+, φ−〉, where ϕ is the pre-condition, and φ+ and φ− are the addition and deletion sets
(resp.) of belief atoms, i.e. a belief base B is revised with addition and deletion sets φ+ and φ− to be (B \ φ−) ∪ φ+ when
the action executes. In addition, there are composite programs P1; P2 for sequence and P1 ‖ P2 for interleaved concurrency.
Finally, a declarative goal program goal(ϕs, P, ϕ f) expresses that the declarative goal ϕs should be achieved through program
P , failing if ϕ f becomes true, and retrying as long as neither ϕs nor ϕ f is true (see in [23] for details). Additionally, there
are auxiliary program forms that are used internally when assigning semantics to programs, namely nil, the empty program,
and P1 � P2 that executes P2 if the case that P1 fails.

When a plan Pl = e : ϕ ← P is selected to respond to an event, its plan-body P is adopted as an intention in the
intention base � (a.k.a. the partially executed plan-body). Finally, we assume a plan library does not have recursive plans
(thus avoiding potential infinite state space).

2.1.1. Running example – conference travel agent
For illustration, we give a classic example—arranging a conference trip—as shown in Table 1.
A BDI agent desires to arrange a conference trip, denoted by an external event e1. We assume there are only two ways

to travel to the conference. The first way is to travel by car, given by the plan Pl1 = e1 : b1 ∧ b2 ← act1; act2. The plan Pl1
expresses that if the agent believes it owns a car (i.e. b1) and the venue is in the driving distance (i.e. b2), it can start the
car and drive all the way to the venue. To specify the actions, we have act1 = b3 ← 〈{b4}, ∅〉 and act2 = b4 ← 〈{b5}, ∅〉. For
3

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
Table 1
A BDI agent for conference travelling.

Belief base External events Plan library Actions

b1 e1 Pl1 = e1 : b1 ∧ b2 ← act1;act2 act1 = b3 ← 〈{b4},∅〉
b2 Pl2 = e1 : b6 ∧ b7 ← act3; e2;act4 act2 = b4 ← 〈{b5},∅〉
b3 Pl3 = e2 : b8 ← act5;act6 act3 = true ← 〈{b8},∅〉
b4 act4 = b9 ← 〈{b5},∅〉

act6 = b10 ← 〈{b9}, {b8,b10}〉
Where e1 stands for conference_travelling, e2 for get_onboard, act1 for start_car, act2 for driving, act3 for book_flight, act4 for
go_to_venue, act5 for go_to_airport, act6 for flying, b1 for own_car, b2 for driving_distance, b3 for car_functional, b4 for en-
gine_on, b5 for at_venue, b6 for budget_allowed, b7 for flight_available, b8 for flight_booked, b9 for flight_landed, and b10 for
at_airport.

Table 2
Bigraph components and operations.

Component/Operation Algebraic form Diagrammatic form

Entity of arity 1 Ka K

a

Name closure /a Ka
K

Site id

Region 1

Nesting Act.B.id
B

Act

Parallel product Cx.id ‖ Dx.id
C D

x

Merge product Cx.id | Dx.id
C D

x

example, the action act1 expresses that if the car is functional (i.e. b3) and after executing act1, the belief of the engine
being on (i.e. b4) will be added while deleting nothing from the belief base.

The second way is to travel by air, given by the plan Pl2 = e1 : b6 ∧ b7 ← act3; e2; act4. This plan expresses that if
the budget allows (i.e. b6) and there is a flight (i.e. b7), the agent can book the ticket first, then post internally a sub-
event to actually travelling by plane, and go to the venue after landing. For actions, we have act3 = true ← 〈{b8}, ∅〉 and
act4 = b9 ← 〈{b5}, ∅〉. To address the sub-event e2, we have plan Pl3 = e2 : b8 ← act5; act6. Pl3 expresses that if the agent
believes the flight has been booked, it can go to the airport and fly by plane. Also, we have act5 = b8 ← 〈{b10}, ∅〉 and
act6 = b10 ← 〈{b9}, {b8, b10}〉. In particular, action act6 indicates that if at airport (i.e. b10 for at_airport), after the
flight it will add the belief atom b9 for flight_landed, and delete both belief atoms b8 for flight_booked and b10
for at_airport.

We define the initial belief base to be B = {b1, b2, b6, b7}. This expresses the agent believes that it owns a car (b1), the
venue is in the driving distance (b2), the budget is sufficient for flight (b6), and there is a flight available (b7).

2.2. Bigraphs

Bigraphs are a universal modelling language, introduced by Milner [24], for both modelling ubiquitous systems and as
a unifying theory for many existing calculi for concurrency and mobility. A bigraph consists of a pair of relations over the
same set of entities: a directed forest representing topological space in terms of containment, and a hyper-graph expressing
the interactions and (non-spatial) relationships among entities. Each entity is assigned a type, which determines its arity
(i.e. number of links), and whether it is atomic (i.e. it cannot contain other entities). For the purpose of presenting our
approach, we provide only an informal overview of bigraphs. The full theory is detailed elsewhere [24].

Bigraphs can be described in algebraic terms or with an equivalent diagrammatical representation as shown in Table 2.
An example bigraph, representing a simple phone connection and cloning scenario, is in Fig. 2a. In general, bigraphs permit
any kind of shape (sometimes coloured) for typed entities, e.g. we use a lock symbol for entity Locked and a diamond
for entity Data . We allow entities to be parameterised, i.e. K(n) for n ∈ N , allowing them to represent families of entities,
4

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
Fig. 2. Full bigraph modelling example: Agents and Calls. (a) Initial bigraph; (b) Place graph; (c) Link graph; (d) Reaction rule connect; (e) Reaction rule
clone; (f) Possible execution trace (matches shown as bold). (For interpretation of the colours in the figure(s), the reader is referred to the web version of
this article.)

e.g. K(0), K(1), Entities can be connected through green links. Names1 allow links (or potential links) to bigraphs in an
external environment or context, and are written above the bigraph. Unconnected links are closed and drawn as a closed-off
link. Grey rectangles are called sites that indicate parts of the model that have been abstracted away. In other words, an
entity containing a site can contain zero or more entities of any kind. Finally, a dashed rectangle denotes a region of adjacent
parts of the system.

Topological placement of entities—given by the place-graph of Fig. 2b—is described using: nesting that defines the con-
tainment relation on entities; merge product that places two entities side-by-side at the same hierarchical level (e.g. the two
Room entities as they share a common parent); and parallel product that places entities in separate regions, allowing them
to be at different levels of the hierarchy (e.g. any two Phone entities). Importantly, parallel product would not match where
one is below the other in the place graph, i.e. we are looking for two disjoint sub-trees in the place graph. In both merge
and parallel product, bigraphs are linked on common names allowing a link graph (shown in Fig. 2c) to be constructed,
e.g. two Phone entities in different regions can still connect. An overview of the bigraph components and operations are
given in Table 2.

For the example of Fig. 2, we can equivalently write it using the algebraic notion as:

/l (Room.(Agent.Phonel.(Locked | Data) | Agent.1) |
Room.(Agent.Phonel.1 | Agent.(/c Phonec.Data))

2.3. Bigraphical reactive systems

A bigraph represents a system at a single point in time. To allow models to evolve over time we can specify a Bigraphical
Reactive System (BRS) that acts as a rewriting system. A BRS consists of a set of reaction rules of the form L � R , where L
and R are bigraphs. Intuitively, a bigraph B evolves to B ′ by matching and rewriting an occurrence of L in B with R . Such
a reaction is indicated with B � B ′ . We use �+ to denote one or more applications of a rule, and �∗ to denote zero

or more rule applications. We also write rule � to identify the reaction rule being applied to generate the transition. If
no name is specified we assume any rule applied. Reaction rules can be parameterised when they are defined over entities
with parameterised types, i.e. a rule r(k) for all values of k. The transition system of a BRS is a (possibly infinite) graph
whose vertices are bigraphs representing the reachable states and whose edges represent reactions over bigraphs.

BRSs are closely related to term rewriting [25], with bigraphs as terms and model semantics determined by a set of user-
specified rewrite rules. The only built-in BRS semantic is matching a (sub-)bigraph and rewriting with a new bigraph. This

1 Specifically outer-names.
5

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
is in contrast to other modelling formalisms, e.g. π -calculus, that use a fixed set of semantic rules and the user specifies a
model that, when executed on those rules, performs the expected operations. Term rewriting such as Maude language [21]
has found use in modelling agents previously, and bigraphs offer similar advantages, while benefiting from e.g. the intuitive
diagrammatic notion, and support for multiple modelling dimensions (place and link).

An example reaction rule, connect, is in Fig. 2d, which models the case where a disconnected Phone wants to connect
to a call. The use of a name means the first Phone may be either already on a call (creating a conference call), or itself
disconnected. By explicitly matching on Room entities we force the agents in the reaction to be in two different rooms,
although they might connect (through x) to another Phone in the same room. An example of applying connect to the
example bigraph of Fig. 2a is the first transition of Fig. 2f.

We also use conditional bigraphs [20] that allow application conditions to specify contextual requirements within the
rewrite system. For example, we can exclude certain bigraphs appearing within sites of the left-hand-side of a rule. We
write conditions in the form: if 〈−, ,↓〉 where the − indicates a negative condition i.e. that the bigraph of the
condition should not appear/be matched, the black circle represents an arbitrary bigraph we want to ensure does not
appear, and ↓ indicates we specifically do not want the condition to appear in (any of) the sites.2 Importantly the bigraph
in the condition cannot appear anywhere in the site, including nested below other entities. When more than one condition
is specified for a reaction (separated by commas) they must all hold for the rule to apply.

An example reaction rule using conditional bigraphs is in Fig. 2e, which shows how a Phone may be cloned so long as
neither Phone contains a lock, i.e. a Locked entity is nowhere in the two sites. To allow copying (and deletion), reaction
rules can be augmented with instantiation maps that determine a mapping between sites on the left and right-hand side of
a reaction rule. Instantiation maps are denoted graphically as dashed arrows mapping sites in the right-hand side R to sites
in left-hand side L. The instantiation map is omitted from a rule definition when it is an identity. For example, in Fig. 2e,
the instantiation map forces the two sites in the right hand side to be copies of the first site on the left. An example of
applying clone is the second transition in Fig. 2f. Here, due to the commutative nature of parallel product, we match the
Phone containing data as the first Phone in the rule and the empty Phone as the second. This rule would not apply to the
locked phone due to the condition.

Furthermore, rule priorities can be introduced by defining a partial ordering on the reaction rules of a BRS, as imple-
mented in [26]. A reaction rule of lower priority can be applied only if no rule of higher priority is applicable. We write
r1 < r2 when r2 has higher priority than r1 . This notation extends to sets in the natural manner, e.g. {r1, r3} < {r2, r4},
where rules in the same set have the same priority.

A common approach for verifying a BRS is through (bounded) model checking on its transition system, e.g. in Fig. 2f. To
allow labelling of states, which are themselves bigraphs, we define predicates as bigraph patterns. Informally, a pattern can
be seen as a left-hand-side of a reaction rule, i.e. the input to the matching problem. A single state may have multiple labels
if multiple patterns occur in it. Patterns can also be combined with standard Boolean operators to form logical formulae.

3. Encoding BDI agents in bigraphs

We define the structural encoding that maps the syntax (e.g. plans and actions) of a Can BDI agent into equivalent
bigraphs.

Recall a BDI agent is specified by a belief base B consisting of a set of belief atoms, e.g. B = {b1, ..., bn}, a set of events
(i.e. desires) the agent responds to, and a plan library � containing plans in form of Pl = e : ϕ ← P . As the agent executes,
plan-bodies selected for addressing desires become the intentions of the agent.

We take a multi-perspective approach (as introduced in [22]) in which perspectives are represented by separate and
parallel regions. Mirroring the core components of a BDI agent, we employ four perspectives: Belief that handles knowledge
storage and updates; Desire that manages the external events; Intention that captures the current execution states of plan-
bodies; and Plan that holds instructions for the agent on how to bring about its desires (i.e. how to respond to specific
events). This approach allows us to separate design concerns, to be explicit how and when concerns interact, and to visualise
them naturally, as shown in Fig. 1. It also facilitates model extension, for example we could in future add perspectives for
the external (uncertain) environment, or we could replace the Beliefs perspective with one that allows more complex logic
formulas.

The entities in the bigraph model for the syntax of a BDI agent are given in Table 3, grouped by the four perspectives.
For each entity we give the algebraic form as well as structural information in the form of valid parents and linked entities.
The only atomic entities, i.e. that cannot nest other entities, are belief atoms B(n) , logical constant e.g. false , and events Ee .
Detailed information on the role for each of these entities is given as we introduce the encoding.

We define an encoding �·� : B D I → Bg(K) that maps the syntax of a BDI agent – including beliefs, desires, intentions, and
plans – to an equivalent bigraph, where K denotes the set of all entity types in Table 3. No information is lost through �·�
and it is possible to define the inverse encoding �·�−1 establishing an (structural) equivalence, that is, for any agent A
we have A = ��A��−1 as required. Although the inverse is easy to define, some cases are context dependent, e.g. Eq. (12)

2 Conditional bigraphs also allows positive, and contextual conditions, however we do not use these here.
6

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
Table 3
Bigraph entities for BDI syntax encoding.

Description Entity Parent(s) LinksTo Diagrammatic Form

Belief Base Beliefs
Beliefs

Belief Atoms B(n) {Beliefs,Pre,Add,Del} B(n)

Logical False false {Beliefs,Pre} false

Desire Set Desires

Desires

Event Ee {Desires,PB,Conc} PlanSete

Intention base Intentions

Intentions

Intention Intent Intentions

Intent

Plan library Plans

Plans

Relevant Plans PlanSete {Plans, Intent,Seq,Cons,L,R} Ee

PlanSet

Plan Plan PlanSete

Plan

Plan Body PB Plan

PB

Action Act {PB,Seq,Cons,L,R}
Act

Precondition Pre {Act , Plan}
Pre

Belief Addition Add Act

Add

Belief Deletion Del Act

Del

Sequence ; Seq {PB,Try}
Seq

Plan Choice � Try {Intent,Seq,Goal,L,R}
Try

Next Pointer Cons {Seq,Try}
Cons

Concurrency ‖ Conc {Seq,Try,PB}
Conc

Concurrency Markers {L,R} Conc

L

Declarative Goal Goal {Seq,Try,L,R,PB}
Goal

Success Condition SC Goal

SC

Failure Condition FC Goal

FC

and Eq. (13) related to belief atoms in Fig. 3 have the same bigraph representation but always appear in distinct contexts
(pre-conditions and action outcomes respectively).3 For brevity we omit the details of the inverse encoding.

The encoding is defined inductively as shown in Fig. 3. To aid explanation, we give the encoding in two parts. In Fig. 3a,
the encoding of agent belief, desire and intention structures are given. In the second part, the encoding of plans, in particular
the plan-bodies, of an agent are provided in Fig. 3b. The parts are not distinct e.g. the plans within the plan library are
encoded using the encoding of plan-bodies. We use

∏
M

def= M | . . . | M to denote iterated merge product. In the next few
sections, we explain the (numbered) equations in Fig. 3.

3 The inverse of true is a special case as we may map either to the truth term or an empty context set. However both options give rise to behaviourally
equivalent agents.
7

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
�bn� = B(n) (1)

� f alse� = false (2)

�true� = 1 (3)

�B = {b1 . . .bn}� = Beliefs.(�b1� | . . . | �bn�) (4)

�Ee = {e1 . . . en}� = Desires.(�e1� | . . . | �en�) (5)

�e� = Ee (6)

�� = {P1, ..., Pn}� = Intentions.(Intent.�P1� | . . . | Intent.�Pn�) (7)

�� = {Pl1 . . . Pln}� = Plans.
∏
e∈E

PlanSete .(�Pl j� | . . . | �Plk�)
where trigger(Pl j)=trigger(Plk)=e

(8)

�〈N1, . . . , Nn〉� = �N1� ‖ · · · ‖ �Nn� where Ni ∈ {Ee, P ,B,�,�} (9)

(a) Beliefs, desire, intention, and plan library encoding.

�nil� = 1 (10)

�act = ϕ ← 〈φ+, φ−〉� = Act.(Pre.�ϕ� | Add.�φ+� | Del.�φ−�) (11)

�ϕ = b1 ∧ · · · ∧ bn� = �b1� | . . . | �bn� (12)

�φ± = {b1 . . .bn}� = �b1� | . . . | �bn� (13)

�P1; P2� = Seq.(�P1� | Cons.�P2�) (14)

�P1 ‖ P2� = Conc.(L.�P1� | R.�P2�) (15)

�goal(ϕs, P ,ϕ f)� = Goal.(SC.�ϕs� | �P� | FC.�ϕ f �) (16)

�P1 � P2� = Try.(�P1� | Cons.�P2�) (17)

�e : (|ϕ1 : P1, . . . ,ϕ2 : P2|)� = PlanSete .(�ϕ1 : P1� | . . . | �ϕ2 : P2�) (18)

�ϕ : P� = Plan.(Pre.�ϕ� | PB.�P�) (19)

�Pl = e : ϕ ← P� = �ϕ : P� (20)

(b) Plan and plan-body encoding.

Fig. 3. Encoding �·� from BDI agents to bigraphs.

3.1. Encoding of beliefs, desires, and intentions

Equation (9) is a general rule describing how tuples map into parallel regions. We use this to ensures the top-level
components of an agent 〈B, Ee, �, �〉—beliefs, desires, intentions, and plan library—are mapped to separate perspectives
(regions) in the bigraph.

We assume all belief formulas ϕ are expressed in propositional logic. Recall that the convention in AgentSpeak for the
belief base is ϕ ::= b | ¬b | (ϕ1 ∧ ϕ2) | true | false. For convenience, the parameterised entities B(n) (Eq. (1)) are used for both
positive and negative atoms: b or ¬b (e.g. �b� = �b0� = B(0), �¬b� = �b1� = B(1)). Using this, all formulas can be constructed
in pure conjunctive form, i.e. ϕ = b1 ∧ · · · ∧ bn . We allow logical constants for true and f alse representing formulas that
are always/never entailed, e.g. an action with pre-condition f alse never executes. In the bigraph model, we only assign an
entity false to represent logical f alse (Eq. (2)), while the logical constant true is mapped to the empty bigraph (Eq. (3)) as
we assume an empty formula is always true, e.g. there may be no pre-condition for some action.

Encoding the belief base B (and any set concept in general) from a BDI agent to bigraphs leverages the bag-like nature
of nesting (Eq. (4)). For empty sets, we have �∅� = 1, i.e. the bigraph with one empty region.

To encode desires, an entity of Ee is created for each possible event (that an agent desires to respond to) as seen in
Eq. (5) and Eq. (6). Importantly, Ee exports a name e that allows us to identify specific events using links. Recall that a set
of relevant plans is the set of plans which have the same triggering event. We use this when encoding the plan library
� (Eq. (8)) by having it contain sets of relevant plans PlanSete with e connecting the event e with the set of plans that
respond to it. This differs from typical BDI agents where the plan library is a flat set of plans. This use of indexing by event
name through relevant plans decreases the likelihood of some potential human errors, e.g. misspelling of event names and
also simplifies agent reasoning by avoiding repetitive searching for relevant plans.

Finally, for intentions, we utilise the same set-like structure as beliefs, this time encoding individual (partially executed)
plan-bodies as required (Eq. (7)), which will be discussed in the next section.
8

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
〈Plan〉 ::= e : 〈Pre〉 ← 〈UserP〉
〈UserP〉 ::= 〈BasicP〉 | 〈UserP〉;〈UserP〉 | 〈UserP〉‖〈UserP〉 |

goal(ϕs,e,ϕ f)

〈P〉 ::= nil | 〈BasicP〉 | 〈P〉;〈P〉 | 〈P〉‖〈P〉 |
goal(ϕs, 〈P〉,ϕ f) | 〈P〉�〈P〉 |
e : (|ϕ1 : 〈UserP〉, . . . ,ϕn : 〈UserP〉|)

〈BasicP〉 ::= e | 〈Act〉 | +b | −b | ?ϕ

〈Act〉 ::= 〈Pre〉 ← 〈φ+, φ−〉
〈Pre〉 ::= ϕ | f alse | truth

Fig. 4. Grammar for plans and plan-bodies.

3.2. Encoding plans and plan-bodies

Plans and plan-bodies are specified with the language given in Fig. 4, which includes two forms of plan-bodies: 〈UserP〉
that the user writes, and the more comprehensive 〈P〉 that can occur during any execution.

A plan e : Pre ← 〈UserP〉 consists of a triggering event e, the context (pre-condition) 〈Pre〉, and a user-defined plan-body
specified by 〈UserP〉. The user-defined plan-body 〈UserP〉 may be the basic building block 〈BasicP〉 including handling an
internal event e, or executing an action 〈Act〉. Actions also have the pre-condition 〈Pre〉, which indicates when an action is
valid for execution given in the current belief state. After executing an action, φ+ and φ− are sets of beliefs to be added and
removed from the belief state, respectively. The user-defined plan-body 〈UserP〉 can also be combined in the three ways:
〈UserP〉; 〈UserP〉 executing those two 〈UserP〉 in sequence, 〈UserP〉 ‖ 〈UserP〉 pursing those two 〈UserP〉 concurrently, and
goal(ϕs, e, ϕ f) achieving the state ϕs through addressing an internal event e, failing when ϕ f holds, and retrying as long
as neither ϕs nor ϕ f is believed to be true. Internally (i.e. during execution) programs may have three additional forms: nil
is the empty program that is always successful, 〈P〉 � 〈P〉 represents trying the first 〈P〉 while keeping the second 〈P〉 as a
backup in case the first 〈P〉 fails, and e : (|ϕ1 : 〈UserP〉 . . . ϕn : 〈UserP〉|) is a set of backup plans which are all triggered by
the event e.

The bigraph encoding of plans and plan-bodies (Fig. 3b) mirrors the grammar given in Fig. 4 by specifying a mapping
for each syntactic form. Each individual plan is represented as the pairing of some pre-condition (as encoded belief atoms),
nested in the entity Pre , and an encoded plan-body, nested in entity PB (Eq. (19) and Eq. (20) in Fig. 3b).

Bigraph entities of 〈UserP〉 are built by introducing additional controls for each form, e.g. Seq . As the merge product
operator of bigraphs is commutative, i.e. A | B ≡ B | A, we need to add additional entities to force an ordering on the
children. For example, the sequencing P1; P2 (Eq. (14) in Fig. 3b) utilises an entity Cons that identifies P2 as the next to
execute after the successful execution of its predecessor P1. Likewise, the form P1 � P2 (Eq. (17)), that tries P1 with P2
as a backup, uses Cons to distinguish between P1 and P2. For concurrency (Eq. (15)) we require two additional controls L
and R to identify the left and right of the concurrency structure ‖. Finally, for the form of declarative goals goal(ϕs, P , ϕ f)

(Eq. (16)), we map it to an entity Goal that nests a success condition SC , failure condition FC , and the current form of the
remaining program.

Finally, actions are encoded (Eq. (11)) in a similar way. In particular, raw entailment and belief state update forms,
i.e. ?ϕ, +b, and −b, may be seen as special cases of actions that do not update the external environment. We establish the
following equivalences to unify them under the same action encoding.

?ϕ ≡ act : ϕ ← 〈∅,∅〉 (21)

+b ≡ act : ∅ ← 〈{b},∅〉 (22)

−b ≡ act : ∅ ← 〈∅, {b}〉 (23)

3.3. Example of encoding

To show how our encoding works, Table 4 provides the mapping for a BDI agent for the travelling example in Table 1.
This completes the structural encoding (i.e. the syntactic specification of a BDI agent), we now turn our attention to

a behavioural encoding of BDI agents (i.e. the operation semantics of a BDI agent) as a BRS. We do so in an incremental
manner in the following three steps: in Section 4 we define the semantics of a subset of Can that we call the core Can.
Core Can semantics excludes concurrency and declarative goals, and so resembles AgentSpeak [2]. In Section 5 we encode
core Can as a BRS and in Section 6 we extend such a BRS for the core Can to include concurrency and declarative goals.
9

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
Table 4
Example encoding of a conference travel agent in Table 1.

Agent �Agent�

B = {b1,b2,b6,b7} Beliefs.(B(1) | B(2) | B(6) | B(7))

� = {Pl1, Pl2, Pl3} Plans.(PlanSete1 .(�Pl1� | �Pl2�) | PlanSete2 .�Pl3�)

Pl1 = e1 : ϕ1 ← act1;act2 Plan.(Pre.(�ϕ1� | PB.Seq.(�act1� | Cons.�act2�))

Pl2 = e1 : ϕ2 ← act3; e2;act4 Plan.(Pre.(�ϕ2� | PB.Seq.(�act3� | Cons.Seq.(�e2� | Cons.�act4�)))

Pl3 = e2 : ϕ3 ← act5;act6 Plan.(Pre.(�ϕ3� | PB.Seq.(�act5� | Cons.�act6�))

ϕ1 = b1 ∧ b2 B(1) | B(2)

act1 = b3 ← 〈{b4},∅〉 Act.(Pre.B(3) | Add.B(4) | Del.1)

act2 = b4 ← 〈{b5},∅〉 Act.(Pre.B(4) | Add.B(5) | Del.1)

ϕ2 = b6 ∧ b7 B(6) | B(7)

act3 = true ← 〈{b8},∅〉 Act.(Pre.1 | Add.B(8) | Del.1)

e2 Ee2

act4 = b9 ← 〈{b5},∅}〉 Act.(Pre.B(9) | Add.B(5) | Del.1)

ϕ3 = b8 B(8)

act5 = b8 ← 〈{b10},∅〉 Act.(Pre.B(8) | Add.B(10) | Del.1)

act6 = b10 ← 〈{b9}, {b8,b10}〉 Act.(Pre.B(10) | Add.B(9) | Del.(B(8) | B(10)))

4. Semantics of core CAN language

4.1. Overview of core Can language

The core operation of an agent in response to an (external) event is as follows. All relevant plans for that event are
retrieved from the (pre-defined) plan library. An applicable plan is selected (if one exists) and its plan-body is added to
the intention base. The plan-body consists of discrete steps, e.g. actions or sub-events. When executing a sub-event, its
applicable plan requires to be found, and its plan-body is also added to the intention base – this forms an execution tree
within the intention. A BDI agent continues to execute until there are no pending events, and all intentions are completed
(either successfully or with failure).

4.2. Core Can semantics

We specify the behaviour of an agent as an operational semantics [27] defined over configurations C and transitions
C → C′ . Transitions C → C′ denote a single execution step between configuration C and C′ . We write C → (resp. C �) to
state that there is some (resp. is not) C′ such that C → C′ .

A derivation rule specifies the necessary conditions for an agent to transition to a new configuration. A derivation rule
consists of a (possibly empty) set of premises pi (i = 1, . . . , n) on C , and a conclusion, denoted by

p1 p2 · · · pn

C → C′ l

where l is a rule name. We write C l−→ C′ to denote C evolves to C′ through the application of derivation rule l.
The Can semantics were originally defined [6] over the triple 〈B, A, P 〉 where B is the current belief base, A the sequence

of actions that have been executed, and P the current partially executed plan-body. As the recorded sequence of executed
actions is never used to determine the operation of an agent, i.e. there are no pre-condition on A, we do not include it
here (i.e. 〈B, P 〉). It is trivial to log the action sequence within the bigraph model if required, however we do not do so here
because an action log introduces states that would otherwise be isomorphic (resulting in larger transition systems).

The semantics of Can language is specified by two types of transitions. The first transition type, denoted as →, specifies
intention-level evolution in terms of configuration 〈B, P 〉 where B is the current belief set, and P the plan-body currently
being executed (i.e. the next step of the current intention). The second type, denoted as ⇒, specifies agent-level evolution
over 〈Ee, B, �〉, detailing how to execute a complete agent where Ee stands for the set of pending external events required
to address.

Fig. 5 gives the set of derivation rules for evolving any single intention. For example, derivation rule act handles the
execution of an action, when the pre-condition is met, resulting in a belief state update. Rules ?, +b and −b are special
actions that perform pre-condition check (?), adding one belief atom (+b) and deleting atoms (−b). As in Section 3, we
assume an equivalence between act and ?, +b, −b and do not directly model these rules. Rule event replaces an event
with the set of relevant plans, while rule select chooses an applicable plan from a set of relevant plans while retaining
un-selected plans as backups. With these backup plans, the rules for failure recovery �; , �� , and �⊥ enable new plans
to be selected if the current plan fails (due to e.g. the unexpected environment changes). Finally, rules ; and ;� describe
executing plan-bodies in sequence.
10

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
act : ψ ← 〈φ−, φ+〉 B � ψ

〈B,act〉 → 〈(B \ φ− ∪ φ+),nil〉 act
B |= φ

〈B,?φ〉 → 〈B,nil〉 ?

〈B,+b〉 → 〈B ∪ {b},nil〉 + b 〈B,−b〉 → 〈B \ {b},nil〉 − b

� = {ϕ : P | (e′ = ϕ ← P) ∈ � ∧ e′ = e}
〈B, e〉 → 〈B, e : (| � |)〉 event

ϕ : P ∈ � B |= ϕ

〈B, e : (| � |)〉 → 〈B, P � e : (| � \ {ϕ : P } |)〉 select

〈B, P1〉 → 〈B′, P ′
1〉

〈B, P1 � P2〉 → 〈B′, P ′
1 � P2)〉 �; 〈B, (nil � P2)〉 → 〈B′,nil〉 ��

P1 �= nil 〈B, P1〉 � 〈B, P2〉 → 〈B′, P ′
2〉

〈B, P1 � P2〉 → 〈B′, P ′
2〉 �⊥

〈B, P1〉 → 〈B′, P ′
1〉

〈B, (P1; P2)〉 → 〈B′, (P ′
1; P2)〉 ; 〈B, P 〉 → 〈B′, P ′〉

〈B, (nil; P)〉 → 〈B′, P ′〉 ;�

Fig. 5. Core Can semantics.

e ∈ Ee

〈Ee,B,�〉 ⇒ 〈Ee \ {e},B,� ∪ {e}〉 Aevent

P ∈ � 〈B, P 〉 → 〈B′, P ′〉
〈Ee,B,�〉 ⇒ 〈Ee,B′, (� \ {P }) ∪ {P ′}〉 Astep

P ∈ � 〈B, P 〉 �

〈Ee,B,�〉 ⇒ 〈Ee,B,� \ {P }〉 Aupdate

Fig. 6. Derivation rules for agent configuration.

The agent-level semantics are given in Fig. 6. An agent configuration is defined by the triple 〈Ee, B, �〉 consisting of a
set of external events Ee to which the agent is required to respond, the belief set B, and the intention base � – a set
of partially executed plan-bodies P that the agent has already committed to. The derivation rule Aevent handles external
events, which originate from the environment,4 by adopting them as intentions. Rule Astep selects an intention from the
intention base, and evolves a single step w.r.t. intention-level transition, while Aupdate discards intentions which cannot
make any intention-level transition (either because it has already succeeded, or it failed).5

4.3. Example of core Can semantics

To show how an agent evolves in the Can semantics we use the conference travelling example in Table 1. Assuming the
external event e1 has already been converted from a desire to an intention, Fig. 7 illustrates the intention-level evolution
of this intention according to the rules presented in Fig. 5. In Fig. 7 agents evolve from left to right, each line consists of a
single step of an intention. Below each step we show the sub-rules that applied. A commentary is as follows.

When the event e1 is posted to the agent, the event rule in Fig. 5 transforms e1 into the program containing all the
relevant plans available (1). If the agent believes that it owns a car and the venue is within driving distance (i.e. ϕ1 holds),
then the select rule transforms the set of relevant plans into the selected plan (2), which indicates the sequence act1; act2
is ready for execution, while the other plans are indicated as backup on the right-hand side of the symbol �. Next, the
agent tries to execute the program act1; act2. Given the belief base in Table 1, the pre-condition act1 does not hold (e.g. the
car engine fails to start), thus act1 �. Meanwhile, the backup plan is applicable shown by the derivation select from e1 :
(|ϕ2 : act3; e2; act4|) to act3; e2; act4 � e1 : (|∅|). According to the rule �⊥ , the agent can initiate the failure recovery by
trying such a backup plan, resulting in the program shown in (3). Since act3 has true as its pre-condition, it can always be
executed shown by act3

act−→ nil. After execution of act3, the rule ; then updates the entire sequence from act3; e2; act4 to
nil; e2; act4. After the left-hand side of � is updated, the rule �; can then further transform the program to that in (4). In

4 As we do not model the environment explicitly, we assume any events are waiting in the desire set at the start of an agent execution.
5 In the original Can semantics there is no way to determine if an event was handled successfully or not, both cases are treated the same way (by

removing the intention when it is done or cannot progress).
11

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
(1) e1
event−−−→ e1 : (|ϕ1 : act1;act2,ϕ2 : act3; e2;act4|)

(2) e1 : (|ϕ1 : act1;act2,ϕ2 : act3; e2;act4|) select−−−→ act1;act2 � e1 : (|ϕ2 : act3; e2;act4|)

(3) act1;act2 � e1 : (|ϕ2 : act3; e2;act4|)
act1 �[

e1 : (|ϕ2 : act3; e2;act4|) select−−−→ act3; e2;act4 � e1 : (|∅|)

]
act3; e2;act3 � e1 : (|∅|)

�⊥−−→

(4) act3; e2;act4 � e1 : (|∅|) act3
act−→ nil

act3; e2;act4
;−→ nil; e2;act4

�;−→

nil; e2;act4 � e1 : (|∅|)

(5) nil; e2;act4 � e1 : (|∅|) e2
select−−−→ e2 : (|ϕ3 : act5;act6|)

e2;act4
;−→ e2 : (|ϕ3 : act5;act6|);act4

nil; e2;act4
;�−→ e2 : (|ϕ3 : act5;act6|);act4

�;−→

e2 : (|ϕ3 : act5;act6|);act4 � e1 : (|∅|)

Fig. 7. Illustration of intention-level evolution of the event e1.

order to discard the symbol nil in a sequence, it requires the part after nil in a sequence to be progressed, namely e2; act4.
To progress the e2; act4, it requires to progress the first part of such a sequence, i.e. e2. To progress the event e2, it requires
to retrieve a set of its relevant plans. Therefore, we have what is shown in the (5). The rule select firstly transforms the
event e2 to a set of relevant plans, secondly the rule ; updates the sequence e2; act4, and thirdly the symbol nil can be
removed by the rule ;� from the entire sequence nil; e2; act4. Finally, the rule �; can follow up transforming the entire
program on the left-hand side of � accordingly.

For brevity, we omit the rest of the evolution. In practice an agent may execute multiple intentions concurrently.

4.4. AND/OR trees

We can view the semantic evolution of the agent program in terms of reductions over AND/OR trees, and use this
representation to reason about the interactions between events, plans, and intentions [28,29]. AND nodes are successful
if all of their children succeed while OR nodes are successful if at least one child succeeds. We make heavy use of such
AND/OR trees in our behavioural encoding of Can semantics in bigraphs that can be seen (in part) as reductions over these
trees. However, we stress that although the behaviour of a Can agent can be visualised via AND/OR trees, in practice, the
trees are not fully realised in memory and are created on-demand as the intention evolves.

The root of an AND/OR tree is a top-level external event represented as an OR node, that is, an event succeeds if at least
one plan succeeds. The tree is built implicitly through the syntax of Can. For example, the sequencing symbol ; ensures
that execution must successfully execute all steps in the plan-body to allow the parent AND node to succeed. Meanwhile,
the failure recovery symbol � represents choice, with backup plans creating the branching structure. In Section 6.1, an
additional form ‖ will be introduced to complement ; by identifying branches that can be explored concurrently.

As an example we revisit the conference travelling example of Table 1 showing one possible AND/OR tree for the plans
Pl1 = e1 : ϕ1 ← act1; act2, Pl2 = e1 : ϕ2 ← act3; e2; act4, and Pl3 = e2 : ϕ3 ← act5; act6. In this case, Pl1 was chosen first and
Pl2 kept as a backup plan as shown in Fig. 8. The top-level event e1 is achieved if either of the two plans Pl1 or Pl2 are
successful. In this case the agent has chosen to do Pl1 before Pl2, although the ordering is not fixed ahead of execution
time. The plan Pl1 itself involves performing the actions act1 followed by act2, whereas one part of plan-body of plan Pl2
involves achieving the sub-event e2 which can, in turn, be addressed by the plan Pl3.

From the point of view of the semantics, the tree is explored in a depth-first manner with reductions being pushed down
the tree. For example, the derivation rule ; reduces a given branch of the tree while the rule ;� moves to the next child at
the same AND level. When a node cannot be reduced, e.g. if an action pre-condition is unmet, this failure propagates to the
closest branch point (OR-node) where they are handled by the failure recovery rules (e.g. �⊥).
12

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
e1

Pl1

act1 act2

Pl2

act3 e2 act4

Pl3

act5 act6

OR

AND

Intention

ϕ1 ϕ2

ϕ3

�

; ; ;

;
Fig. 8. Snapshot of AND/OR tree representing the intention for the event e1 where the agent chose to try Pl1 before Pl2 during execution.

Table 5
Additional entities for semantics encoding.

Description Entity Parent(s) LinksTo Diagrammatic form

Set of beliefs to check Check Beliefs
Check

Unknown check result CheckRes {Act,Plan}
Successful entailment CheckRes.T {Act,Plan}
Failed entailment CheckRes.F {Act,Plan}
Not-yet checked token CheckToken Plan

Reduction of entity/site Reduce {Intention,Try,Seq,Conc,L,R}
Reduction failure ReduceF {Intention,Seq,Try,L,R} �

5. Encoding core CAN semantics in bigraphs

We now encode the core Can semantics (presented in Figs. 5 and 6) as a BRS and show that the encoding is faithful.
By faithful we mean that for each transition l=⇒ (resp. intention l−→) 〈Ee, B, �〉 l=⇒ 〈E ′ e, B′, �′〉 (resp. 〈B, P 〉 l=⇒ 〈B′, P ′〉) there
exists a finite sequence of reaction rules, such that �〈Ee, B, �〉� �+�〈E ′ e, B′, �′〉� (resp. �〈B, P 〉� �+�〈B′, P ′〉�) and no
new BDI derivation rule becomes applicable. The encoding may introduce new intermediate states, but there are no new
applicable BDI derivation rules, i.e. there is no additional branching.

Throughout the remainder of the paper we use Eq. (9) from Fig. 3a to allow focusing on specific elements of an agent/in-
tention, e.g. allowing us to ignore the plan library � above as this is never mutated.

To encode control flow required for execution, we require additional entities that are not part of the structural encoding,
i.e. they do not necessarily have a corresponding agent representation in Can. These additional entities are given in Table 5
and their purpose is introduced as they are used.

For brevity, we give an overview of key aspects of the encoding. The full executable model, for use with BigraphER [19],
is available [30].

5.1. Belief checks and updates

The Can semantics assumes set operations and logic entailment as built-in operators. However, as we want an executable
semantics, these must be explicitly encoded in the BRS.

We encode belief updates and checks in the usual recursive manner as shown in Fig. 9. For example, the reaction rule
check_end provides a base-case for check_T(n), while check_F (a conditional rule) handles the case when there is no
match in the belief base. Similar reaction rules (not shown) are provided to perform addition and deletion of beliefs.6

The belief check reaction rules use auxiliary entities, e.g. Checkl and CheckResl (shown as a diamond). These auxiliary
entities, which are added from other reaction rules, encode control flow. As these entities are not part of the Can syntax
encoding, they do not enable any additional agent steps. After performing the sequence of reaction rules equivalent to a
Can derivation rule, no auxiliary entities will be present – they are only allowed in intermediate states.

Notice the number of children of Check decreases on each reaction rule application suffices to prove that the logical
entailment (resp. checks/updates) will complete in a finite number of steps. As such, placing belief checks/updates into

6 We assume additions/deletions are disjoint (as they are in practice) so that there are no race conditions between the reactions.
13

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
Fig. 9. Reactions for logical entailment.

the highest rule priority class of the BRS allows us to assume belief checks/updates are atomic with respect to the other
reactions. That is, an agent never sees a part-modified belief set (as required to model atomic actions).

We refer to the priority class of set operations with the label

{set_ops} def={check_T(n),check_end,check_F,

del_in(n),del_notin(n),delete_end,

add_end,add_notin(n),add_in(n)}
5.2. Modelling reductions

The Can semantics assumes a notion of irreducibility (this is the same as negative premises in [31,32]). That is, the
derivation rule 〈B, P 〉 � represents the failure of an agent to perform any further operation on the program P under the
belief B, given all specified reducible rules in Can. For example, 〈B, act〉 � holds if the pre-condition of the action act is
not met.

While Can remains agnostic to such details, we require the notion of irreducibility to be encoded explicitly to obtain
an executable semantics. To encode explicit reduction, we introduce auxiliary controls Reduce (by colouring the entity/site
being reduced as red) and ReduceF (representing �).

Reduce requests the entities nested below are reduced, for example by executing an action. In the case reduction is not
possible, e.g. if an action precondition is not met, ReduceF represents failure to reduce, enabling checks of the premise
〈B, P 〉 � in derivation rules.

If we view intentions as AND/OR trees, the explicit reductions perform the tree search with Reduce determining which
sub-tree to reduce next, and ReduceF indicating a sub-tree could not reduce and backtracking should be performed.

We define a function � �·� � : 〈B, P 〉 → Bg(K ∪ Reduce) that, for belief base B and intention-level program P , requests that
the sub-tree rooted at P be reduced. That is:

��〈B, P 〉�� def= �B� ‖ Reduce.�P�

where B is a mutable, globally scoped, environment for the reduction of P . This is benefit of bigraphs for modelling:
environments can be placed in parallel.

The function � �·� � for reduction plays a key role in our semantic encoding. For example, it forms the bridge between
agent-level steps and intention-level steps, i.e. an agent 〈B, Ee, {P ∪ �}, �〉 can (try to) step intention P using � �〈B, P 〉� �.

5.3. Core semantic encoding

Given the atomic set operations and explicit reduction, we now show how the core Can semantics are encoded as a BRS.
In the following lemmas, for readability, we allow free variables and assume the obvious interpretation. For example, we
assume that P reduces to P ′ , en is an event in E , etc.

Also, for readability, we refer to a “corresponding” reduction sequence to mean that there is a one to one correspondence
between the Can step and the reduction sequence, no new possible reductions are introduced. The reduction sequence may
not be unique, for example set operations can be performed in different orders, but the outcome of the sequence is the
same as the Can step outcome, i.e. we model a big-step semantics through a sequence of small-steps.

5.3.1. Actions
The main operation of an agent is to execute actions that update both the external environment, e.g. moving a block,

and in-turn revise the internal belief base. Recall that, in the encoding of syntax of Can, we have established entailment
14

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
Beliefs Pre

Act

Check

Beliefs
Pre

Act

�

(a) act_check.

Act

��

(b) act_F.

Beliefs Add Del

Act

Add Del

Beliefs

�

(c) act_T.

Fig. 10. Reactions for actions.

and belief state updates (rules ?ϕ, +b, −b) as special cases of actions that simply do not update the external environment.
As such, we can safely omit the explicit reactions for entailment and belief state updates.

If the pre-condition of an action is true, i.e. B |= φ, performing (or reducing) an action consists of the reactions
act_check and act_T as shown in Fig. 10. Firstly, the reaction act_check requests the action pre-condition to be
checked by nesting a Check entity within the belief base. As we have established set operations to be the highest priority
class, we know a belief check operation is finite and applies atomically. Therefore, it does not alter the shape of �B� (i.e. no
other Can rules are enabled). After successful entailment of the action pre-condition, the reaction rule act_T performs the
action by updating the belief base. Once again, given the priority of set operations, the set updates will be effectively atomic
and no other Can derivation rule can interrupt such a belief update.

Lemma 1. (Faithfulness of act) act has a corresponding finite reaction sequence � �〈B, act : ϕ ← 〈φ+, φ−〉〉� � �+�〈B′, nil〉�.

Proof. We show �+ has form act_check � {set_ops} �* act_T � {set_ops} �* and intermediate states do not allow
additional branching. Consider the transitions applicable in each of the four steps; recall the rule priority is act_check<

act_T< {set_ops}.

Step 1
act_check �. The initial state � �〈B, act : ϕ ← 〈φ+, φ−〉〉� � is

Beliefs.(�b1� | . . . | �bn�) ‖ Reduce.Act.(Pre.�ϕ� | Add.�φ+� | Del.�φ−�).

No transition in {set_ops} � is applicable because Beliefs contains only B(n) entities and Act does not contain

Checkl entities. Similarly, act_T � is not applicable. act_check � is applicable (lhs Fig. 10a), resulting in a new
Checkl in Beliefs (rhs Fig. 10a). No other transitions are applicable.

Step 2
{set_ops} �*. We now have state

Beliefs.((�b1� | . . . | �bn�) | Checkl.�ϕ�) ‖ Reduce.Act.(Pre.�ϕ� | Add.�φ+� | Del.�φ−� | CheckResl.1)

Transitions in {set_ops} �* are applicable and there are three cases to consider (induction and 2 base cases: lhs
of Figs. 9a, 9b and 9c). No other transitions are applicable. Together, these transitions reduce in size the number
of beliefs to be checked or remove Checkl , resulting in a finite sequence. In detail:

Case check_T(n). There is at least one B(n) in Checkl , and a matching B(n) in �b1� | . . . | �bn� and so
check_T(n) � applies, which reduces the number of children of Checkl by 1.
15

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
PlanSet

Plans

p

PlanSet PlanSet

Plans

p

�

Fig. 11. reduce_event.

Case check_F. There is at least one B(n) in Checkl but no match in �b1� | . . . | �bn�. This case cannot occur
because the act precondition ϕ holds.

Case check_end. Checkl is empty, in which case check_end � applies, resulting in the removal of Checkl .

Step 3
act_T �. We now have state

Beliefs.(�b1� | . . . | �bn�) ‖ Reduce.Act.(Pre.�ϕ� | Add.�φ+� | Del.�φ−� | CheckResl.T).

Transitions in {set_ops} � are not applicable, but act_T � is applicable, since CheckResl.T is present and the
precondition holds.

Step 4
{set_ops} �. We now have state

Beliefs.((�b1� | . . . | �bn�) | Add.�φ+� | Del.�φ−�) ‖ 1.

Similar to step 2, only transitions in {set_ops} � apply, in this case a finite number of times until Add and Del
are removed. No new branching is introduced, and we are left with bigraph Beliefs.(�bi� | . . . | �b j�) ‖ 1, as required,

(recall �nil� def= 1). B′ = �bi� | . . . | �b j� is B with the belief additions/deletions performed. �
We have discussed what happens when the pre-condition of an action holds. However, it is not explicit in Can semantics

what should be done in the case the pre-condition check fails. From the perspective of an AND/OR tree, as actions are
always under AND nodes, the failure needs to be propagated upwards in order to enable failure recovery to take place. As
introduced in Section 5.2, the entity ReduceF is provided to denote explicitly the reduction failure. Therefore, we have the
reaction act_F to report the failure, given in Fig. 10b. Reducing to ReduceF enables checking of the premise 〈B, act〉 � (as
is done implicitly in Can semantics). Once a failure is reported, other reaction rules can be triggered to, for example, recover
from the failure.

5.3.2. Plan selection
Recall that the agent responds to an event by selecting an applicable plan from a set of pre-defined plans. The following

two derivation rules specify the plan selection. The first rule event converts an event to the set of plans that respond to
that event (i.e. relevant plans), while the second rule select chooses an applicable plan (if exists) from the set of relevant
plans.

The reaction rule corresponding to the derivation rule event is depicted in Fig. 11. As the syntax encoding uses links to
connect an event Ee to its set of relevant plans PlanSete , we can encode the derivation rule event with a single reaction
rule by replacing the event entity Ee with PlanSete as shown in Fig. 11.

Lemma 2. (Faithfulness of event) event has a corresponding finite reaction sequence � �〈B, e〉� � �+�〈B, e : (| � |)〉�.

Proof. �+ corresponds to reduce_event �. Trivial. �
The derivation rule select is modelled in a similar style to how to execute an action, beginning with the pre-

condition check against the belief base before selecting an appropriate plan (if one exists). In detail, the reaction rule
select_plan_check (in Fig. 12a) finds a plan that has not yet had the pre-conditions checked—facilitated via an
automatically-added auxiliary entity CheckToken that records if a plan has already been considered—and initiates an op-
eration to check the plan pre-condition. To ensure the automatic addition of the entity CheckToken to all Plan entities
within the Plans perspective, an additional reaction rule is executed once at the start of a model execution to update the
plan library. This is an implementation detail, we do not add the tokens directly to the syntax encoding in Section 3. After
checking the pre-condition of a plan is true, the reaction rule select_plan_T (in Fig. 12b) removes the selected applicable
plan from the set of relevant plans, and converts it into � form, keeping the rest of plans as backups.
16

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
Beliefs Pre
Plan

PlanSet

e

Check

Beliefs
Pre

Plan

PlanSet

e

�

(a) select_plan_check.

Pre PB

Plan

PlanSet

e

PlanSet

Cons

Try
e

�

(b) select_plan_T.

PlanSet

e

�

e

if 〈−, ,↓〉, 〈−, ,↓〉

�

(c) select_plan_F.

Plan

PlanSet

Cons

Try
e

Plan

PlanSet

Cons

Try
e

�

(d) reset_planset.

Fig. 12. Reactions for plan selection.

Lemma 3. (Faithfulness of select) When the set of relevant plans (|�|) is non-empty and contains at least one applicable plan for a
given event, select has a corresponding finite reaction sequence � �〈B, e : (|�|)〉� � �+�〈B, P � e : (� \ {ϕ : P })〉�.

Proof. Let select_and_check � = select_plan_check � {set_ops} �
∗

be the sequence of rules that selects and tests the pre-
condition for a plan. �+ has form

select_and_check �
+ select_plan_T �. We assume at least one applicable plan. The proof is similar to Lemma 1; in this

case the transitions in select_and_check � reduce the number of plans to be checked until an applicable plan is selected.

Transitions in select_and_check � only introduce auxiliary controls, so no other transitions are enabled. �
If no plan is applicable (a failure), the reaction rule select_plan_F (in Fig. 12c) propagates a ReduceF up the tree.

We use a conditional rule to ensure the plan selection only fails if all plans have been checked (or there are no plans),
i.e. when there are no CheckToken entities left, and no plan that was checked is applicable. Finally, an auxiliary reaction rule
reset_planset (Fig. 12d) ensures that after plan selection, the remaining unchosen (but checked) plans are re-assigned
the control CheckToken to allow the plan to be checked again if failure recovery is required.

5.3.3. Tree reductions
The remaining Can intention-level derivation rules specify how the AND/OR tree should be explored.
The derivation rules ; and ;� describe how to progress the sequencing of P1; P2. The derivation rule ; is encoded

by the reaction rule reduce_seq (Fig. 13a) that pushes reduction into the first child of a sequence. The use of a site
(i.e. an abstraction) in bigraphs allows this single rule to handle any type of program P . In more detail, reduce_seq is a
generalisation of seq_succ and seq_fail. For example, if we get remove id under the control Seq (not id under Cons)
on the left-hand side of reaction rule reduce_seq, we get the reaction rule seq_succ. Therefore, we enforce a priority
ordering on the reaction rules as given in Fig. 13 to ensure that the special cases are applied only when needed.
17

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
Cons

Seq

Cons

Seq

�

(a) reduce_seq.

Cons

Seq

�

(b) seq_succ.

�

Cons

Seq

��

(c) seq_fail.

Fig. 13. Reactions for sequencing with priorities: reduce_seq< {seq_succ,sec_fail}.

Cons

Try

Cons

Try

�

(a) try_seq.

Cons

Try

�

(b) try_succ.

�

Cons

Try

�

(c) try_failure.

Fig. 14. Reactions for recovery with priorities: try_seq< {try_succ,try_failure}.

Lemma 4. (Faithfulness of ;) ; has a corresponding finite reaction sequence � �〈B, P1; P2〉� � �+�〈B′, P ′
1; P2〉�.

Proof. The initial state is �B� ‖ Reduce.(Seq.�P1� | Cons.�P2�). Assume 〈B, P1〉 → 〈B′, P ′
1〉. P1 can reduce so it cannot be

nil, thus the rule reduce_seq applies resulting in bigraph �B� ‖ (Seq.Reduce.�P1� | Cons.�P2�), which matches bigraph
� �〈B, P1〉� � = �B� ‖ Reduce.�P1�. P1 is then reduced to P ′

1, with beliefs B′ , (using assumption) and the result is state �B′� ‖
(Seq.�P ′

1� | Cons.�P2�), which is equivalent to �〈B′, P ′
1; P2〉�. No other transitions are possible. �

The derivation rule ;� is encoded using the reaction rule seq_succ (Fig. 13) that matches in the case the first part of
the sequence completed successfully, i.e. �nil� = 1. As specified in the derivation rule in Can, we not only make the children
under Cons the new current program, but we also (try to) reduce it immediately.

Lemma 5. (Faithfulness of ;�) ;� has a corresponding finite reaction sequence � �〈B, nil; P2〉� � �+�〈B′, P ′
2〉�.

Proof. The initial state is �B� ‖ Reduce.(Seq.�nil� | Cons.�P2�). Assume 〈B, P2〉 → 〈B′, P ′
2〉. The rule seq_succ applies,

resulting in � �〈B, P2〉� �, which, by the assumption, is reduced to P ′
2, with beliefs B′ , i.e. �〈B′, P ′

2〉�. No other transitions are
possible. �
5.3.4. Failure recovery

If we cannot reduce a sequence, then a failure is propagated up the tree through the reaction rule seq_fail (Fig. 13c).
It is important that the reaction rule seq_fail, and later failure cases, do not require the left-hand entity to be under a
Reduce . This means a reaction can be applied as soon as a failure is discovered, rather than the next time the agent attempts
to advance the intention. This matches the Can semantics that handle failure of intention immediately (�⊥ in Fig. 5).
If no backup plans apply e.g. there are no plans left to select, the failure is pushed upwards through the reaction rule
select_plan_F (Fig. 12c). in this case, the transition labelled reaction rule try_failure does not apply as the Cons
entity has been removed. As with sequencing, a priority order is required since try_seq generalises the other reactions.

We now consider the derivation rules �; , �� , and �⊥ that relate to failure recovery. The reaction rule try_seq
(Fig. 14a) encodes the derivation rule �; by pushing reduction into the left hand side of the � operator, if no failure
occurs.

Lemma 6. (Faithfulness of �;) �; has a corresponding finite reaction sequence � �〈B, P1 � P2〉� � �+�〈B′, P ′
1 � P2〉�.

Proof. The argument is similar to Lemma 4, starting from initial state �B� ‖ Reduce.(Try.�P1� | Cons.�P2�) and transition
from Fig. 14a. �

If the selected plan was executed successfully, the reaction rule try_succ (in Fig. 14b) encodes the derivation rule ��
to propagate success up-the-tree by removing the � structure.

Lemma 7. (Faithfulness of ��) �� , has a corresponding finite reaction sequence � �〈B, nil � P2〉� � �+�〈B, nil〉�.

Proof. �+ corresponds to try_succ �. Trivial. �

18

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
Desires

e

Intentions Desires Intent

Intentions

e

�

(a) A_event.

Intent Intent

if 〈−, ,↓〉

�

(b) intention_step.

�

Intent

�

(c) intention_done_F.

Intent

�

(d) intention_done_succ.

Fig. 15. Agent level reactions with priorities: {A_event,intention_step} < {intention_done_F,intention_done_succ}.

Finally, the transition labelled try_failure (Fig. 14c) encodes the derivation rule �⊥ . This is the first instance where
ReduceF is used as a premise to denote a program that failed to progress. To recover, the failed program is deleted and the
agent tries to reduce the right-hand side of � (i.e. by choosing from the remaining the set of relevant plans).

Lemma 8. (Faithfulness of �⊥) �⊥ has a corresponding finite reaction sequence � �〈B, P1 � P2〉� � �+�〈B′, P ′
2〉� when 〈B, P1〉 �.

Proof. Assume 〈B, P1〉 �, and 〈B, P2〉 → 〈B′, P ′
2〉. The initial state is �B� ‖ Reduce.Try.(�P1� | Cons.�P2�). Rule try_seq

(Fig. 14a) applies (as in Lemma 6), however, since 〈B, P1〉 �, P1 must reduce to ReduceF . Rule try_failure then applies,
resulting in a bigraph matching � �〈B, P2〉� �. Through the second assumption, this is reduced to P ′

2, with beliefs B′ . No other
transitions are possible. �
5.3.5. Agent steps

To complete the core semantics of Can, we now encode the agent-level derivation rules: Aevent , Astep , and Aupdate .
The derivation rule Aevent allows the agent to respond to an external event by adopting it in the intention base. This is

encoded by reaction rule A_event (Fig. 15a) that simply moves the event from a desire to an intention.

Lemma 9. (Faithfulness of Aevent) Aevent has a corresponding finite reaction sequence �〈Ee ∪ {en}, B, �〉� �+�〈Ee, B′, � ∪ {en}〉�.

Proof. �+ corresponds to A_event �. Trivial. �
The derivation rule Astep allows the agent to execute a given intention by one reduction step. This is encoded with

reaction rule intention_step (in Fig. 15b) that pushes a reduction into an intention (down the tree) if it is not already
being reduced. This rule introduces the reduction form � �·� � to an intention.

If the reduction is successful, we are left with a new updated P ′ (and B′) as required. Unlike the Can derivation rule
that removes the old intention and replaces it with a modified intention, ours is updated in-place. Multiple intentions can
be reduced concurrently, e.g. intention_step can be applied to two different intentions in an interleaved fashion.

Lemma 10. (Faithfulness of Astep) Astep has a corresponding finite reaction sequence �〈Ee, B, � ∪ {P }〉� �+�〈Ee, B′, � ∪ {P ′}〉�
when 〈B, P 〉 → 〈B′, P ′〉.

Proof. Assume � �〈B, P 〉� � �+�〈B′, P ′〉� and no intention is currently being reduced. By rule intention_step (Fig. 15b),
P transitions to Intent.Reduce.P . This matches � �〈B, P 〉� �, which by assumption, reduces to �〈B′, P ′〉�. This gives Intent.�P ′�,
with beliefs B′ . No other transitions are possible. �

The derivation rule Aupdate is encoded by reaction rules intention_done_F (Fig. 15c) and intention_done_succ
(Fig. 15d). The reaction rule intention_done_F handles the case where there was a failure to progress an intention.
That is, if after pushing a reduction into the intention (via intention_step), we eventually consider Intent.ReduceF .
The reaction rule intention_done_succ is a special case of intention_done_F for when a intention completed
successfully (Intent.1). As the Aupdate rule only applies on failure to reduce an intention, intention_done_succ matches
the form where we have tried to reduce an intention with the nil program inside. Importantly, this means that if an
intention finishes an execution with P = nil, it is not until the next attempt to reduce it that Aupdate is applied. This mirrors
the Can semantics that cannot tell if an intention is removed because it is finished, or if it failed.

Lemma 11. (Faithfulness of Aupdate) Aupdate has a corresponding finite reaction sequence �〈Ee, B, � ∪ {P }〉� �+�〈Ee, B′, �〉� when
〈B, P 〉 �.
19

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
Proof. Two cases.

Case 1. If 〈B, P 〉 �, then P must eventually reduce to a state that allows Intent.ReduceF to be matched, and
intention_done_F � applies, completing the reaction sequence.

Case 2. If P = nil, then �+ corresponds to intention_step � intention_done_succ �. No rule can reduce Reduce.1
further. �

To ensure agent-level transitions apply only when there is no intention currently being reduced (i.e. no intention-level
transitions are being applied), both intention_step and A_event are in the lowest priority class. As intention_step
is a generalisation of intention_done_F and intention_done_succ, the latter two have higher priority class than
intention_step (and A_event).

5.4. Correctness

We can now give the main theorem, which states that the Can derivation rules can be encoded by a corresponding finite
sequence of reaction rules.

Theorem 1 (Faithfulness). For each Can step 〈Ee, B, �〉 ⇒ 〈E ′ e, B′, �′〉 there exists a corresponding finite sequence of reactions such
that

�〈Ee,B,�〉� �+
�〈E ′ e,B′,�′〉� .

Proof. Follows from Lemmas 1–11 above. �
5.5. Reduction example

To show how reduction works, in particular how failures are propagated through the AND/OR tree, we re-visit our
running conference travelling example to address external event e1. Consider the following configuration:

Agent = 〈B = {b1,b2,b6,b7}, P = e1〉
This configuration has the current belief base B and current intention P = e1. The bigraph (omitting desires and plan
library) is:

�Agent� = Beliefs.(B(1) | B(2) | B(6) | B(7)) ‖ Intent.Ee1

The detailed reduction step is given in Fig. 16. For succinctness, whenever appropriate, we use the mapping function to
denote the part of bigraph encoding e.g. �Pl2� while keeping the belief base implicitly as the background. The top-side of
the reaction rule indicates the reaction rule that is applied and the bottom-side of the reaction rule indicates the result of
application of the reaction rule, with line number in the beginning of each line. A short commentary is as follows. In line (1),
the agent starts with an event to address. The reaction rule intention_step introduces the entity Reduce . Lines (2) and
(3) show that to reduce an event, the event is replaced with its relevant plans. Reaction rule intention_step once again
introduces Reduce for selection of an applicable plan. Lines (4) to (6) show the successful selection of an applicable plan,
plan Pl1. From line (8) to line (9), the reaction rule try_seq pushes reduction in the left-hand side of the � symbol,
and from line (9) to line (10), the reaction rule reduce_seq pushes the reduction into the first child of a sequence.
Lines (10) to (12) show the execution of an action. In this case, we can see that the pre-condition of the action is not met,
thus producing the entity ReduceF . As a consequence, this triggers failure recovery by deleting the failed program. Finally,
lines (13) to (16) provide the successful re-selection of another applicable plan, namely plan Pl2.

6. Extended features

The full Can language also supports concurrency within plan-bodies, and declarative goals which allow an event to be
repeatedly pursued until specified success/failure conditions holds. We now show how these features are encoded as bigraph
reaction rules.

6.1. Concurrency

The Can semantics for concurrency are given in Fig. 17. They allow two branches within a single AND/OR tree to be
reduced concurrently. For example, concurrency allows an agent to pursue two sub-tasks (i.e. two sub-events) but the
ordering does not matter as long as they are all achieved eventually. The concurrency construct does not allow true con-
currency, e.g. two branching reducing at the exact same time (same agent step), instead one of the branches is chosen and
20

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
(1) Intent.Ee1

intention_step
�

(2) Intent.Reduce.Ee1

reduce_event
�

(3) Intent.PlanSete1 .(Plan.(Pre.�ϕ1� | PB.Seq.(�act1� | Cons.�act2�)) | �Pl2�)

intention_step
�

(4) Intent.Reduce.PlanSete1 .(Plan.(Pre.�ϕ1� | PB.Seq.(�act1� | Cons.�act2�)) | �Pl2�)

select_plan_check
�

(5) Intent.Reduce.PlanSete1 .(Plan.(CheckRes.1 | Pre.�ϕ1� | PB.Seq.(�act1� | Cons.�act2�)) | �Pl2�)

set_ops
�

∗

(6) Intent.Reduce.PlanSete1 .(Plan.(CheckRes.T | Pre.�ϕ1� | PB.Seq.(�act1� | Cons.�act2�)) | �Pl2�)

select_plan_T
�

(7) Intent.Try.(Seq.(�act1� | Cons.�act2�) | Cons.PlanSete1 .�Pl2�)

intention_step
�

(8) Intent.Reduce.Try.(Seq.(�act1� | Cons.�act2�) | Cons.PlanSete1 .�Pl2�)
try_seq

�

(9) Intent.Try.(Reduce.Seq.(�act1� | Cons.�act2�) | Cons.PlanSete1 .�Pl2�)

reduce_seq
�

(10) Intent.Try.(Seq.(Reduce.Act.(Pre.B(3) | Add.B(4) | Del.1) | Cons.�act2�) | Cons.PlanSete1 .�Pl2�)

act_check
�

(11) Intent.Try.(Seq.(Reduce.Act.(CheckRes.1 | Pre.B(3) | Add.B(4) | Del.1) | Cons.�act2�) | Cons.PlanSete1 .�Pl2�)

set_ops
�

∗

(12) Intent.Try.(Seq.(Reduce.Act.(CheckRes.F | Pre.B(3) | Add.B(4) | Del.1) | Cons.�act2�) | Cons.PlanSete1 .�Pl2�)
act_F

�(as B � b3)

(13) Intent.Try.(ReduceF | Cons.PlanSete1 .�Pl2�))

try_failure
�

(14) Intent.Reduce.PlanSete1 .�Pl2�

select_plan_check
�

(15) Intent.Reduce.PlanSete1 .Plan.(CheckRes.1 | Pre.�ϕ2� | PB.Seq.(�act3� | Cons.Seq.(�e2� | Cons.�act4�)))

select_plan_T
�

(16) Intent.Try.(Seq.(�act3� | Cons.Seq.(�e2� | Cons.�act4�)) | Cons.PlanSete1 .1)

Fig. 16. Example bigraph reduction of event e1 from Table 1.

reduced at agent each step, i.e. in an interleaving manner. An advantage of this approach is that all possible interleavings
can be checked for correctness.

Two reaction rules conc_L (Fig. 18a), and conc_R (Fig. 18b) encode concurrency. As they have the same priority, these
rules specify that reduction can be pushed down either the left or right branch.

Lemma 12. (Faithfulness of ‖1 and ‖2) ‖1 and ‖2 have a corresponding finite reaction sequence � �〈B, P1 ‖ P2〉� � �+�〈B′, P ′
1 ‖ P2〉�

and � �〈B, P1 ‖ P2〉� � �+�〈B′, P1 ‖ P ′ 〉�, respectively.
2

21

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
〈B, P1〉 → 〈B′, P ′
1〉

〈B, (P1‖P2)〉 → 〈B′, (P ′
1‖P2)〉 ‖1

〈B, P2〉 → 〈B′, P ′
2〉

〈B, (P1‖P2)〉 → 〈B′, (P1‖P ′
2)〉 ‖2

〈B, (nil‖nil)〉 → 〈B,nil〉 ‖�

Fig. 17. Can concurrency rules.

Fig. 18. Reactions for concurrency with priorities: {conc_L,conc_R} < {conc_nil_L,conc_nil_R} < {conc_suc,conc_fail_L,con_fail_R}.

Proof. Consider ‖1, and assume 〈B, P1〉 → 〈B′, P ′
1〉, there are two cases:

Case 1. If P2 = nil then 〈B, P2〉 �. The reaction rule conc_nil_L in Fig. 18c applies, resulting in Reduce.�P1�, and by
our assumption � �〈B, P1〉� � reduces.

Case 2. If P1 �= nil then the reaction rule conc_L applies resulting in Reduce.�P1�, and by our assumption � �〈B, P1〉� �
reduces.

‖2 is considered in a similar way. �
Concurrent programs are considered to have completed successfully when both branches complete, i.e. reduced to nil.

The reaction rule conc_suc, given in Fig. 18e, handles the completion of concurrent programs.

Lemma 13. (Faithfulness of ‖�) ‖� has a corresponding finite reaction sequence � �〈B, nil ‖ nil〉� � �+�〈B′, nil〉�.

Proof. �+ corresponds to conc_suc �. Trivial. �
In the case of failures, additional reaction rules conc_fail_L (Fig. 18f) and conc_fail_R (Fig. 18g) propagate failure

up-the-tree if either of the two concurrent branches results in a failure. Importantly, we fail as soon one branch fails, rather
than waiting for the other branch to complete (either successfully or with failure).

As before, a priority ordering on the reaction rules is required as some reaction rules generalise others, e.g. the reaction
rule conc_R would also match reaction rule conc_succ.
22

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
B |= ϕs

〈B,goal(ϕs,P,ϕ f)〉 → 〈B,nil〉 Gs
B |= ϕ f

〈B,goal(ϕs,P,ϕ f)〉 → 〈B,?false〉 G f

P �= P1 � P2 B � ϕs B � ϕ f

〈B,goal(ϕs,P,ϕ f)〉 → 〈B,goal(ϕs,P � P ,ϕ f)〉 Ginit

B � ϕs B � ϕ f 〈B, P1〉 → 〈B′, P ′
1〉

〈B,goal(ϕs, P1 � P2,ϕ f)〉 → 〈B′,goal(ϕs, P ′
1 � P2,ϕ f)〉 G;

B � ϕs B � ϕ f 〈B, P1〉 �

〈B,goal(ϕs, P1 � P2,ϕ f)〉 → 〈B,goal(ϕs, P2 � P2,ϕ f)〉 G�

Fig. 19. Derivation rules for declarative goals.

6.2. Declarative goals

Declarative goals allow an agent to respond persistently to event e until either the success or failure conditions are met.
The Can semantics for declarative goals are given in Fig. 19. The derivation rules Gs and G f deal with the cases when either
the success condition ϕs or the failure condition ϕ f become true. The derivation rule Ginit initialises persistence by setting
the program in the declarative goal to be P � P , i.e. if P fails try P again. The derivation rule G; takes care of performing
a single step on an already initialised program. Finally, the derivation rule G� re-starts the original program if the current
program has finished or got blocked (when neither ϕs nor ϕ f becomes true).

To reduce the number of reaction rules for encoding declarative goals, we check both success and failure conditions si-
multaneously through reaction rule goal_check (Fig. 20a). As before, the entailment machinery provides atomic checks in
both cases. Afterwards the reaction rules goal_suc (Fig. 20b) and goal_fail (Fig. 20c) determine if the goal should com-
plete (either successfully or with failure). Strictly speaking it is possible both success/failure conditions hold simultaneously,
however in practice it is usually assumed success/failure conditions are mutually exclusive.

An interesting feature of the Can derivation rule G f is the use of ?false in the resulting state. This plays a similar role to
ReduceF by explicitly creating an irreducible term to trigger further handling up-the-tree. Recall that the belief entailment
in Can derivation rule ? can be regarded as the special case of the Can derivation rule act (Eq. (21)).

Therefore, we simply let goal_fail reduce to an Act with a false precondition (that always fails) to indicate a failure.

Lemma 14. (Faithfulness of Gs) Gs has a corresponding finite reaction sequence � �〈B, goal(ϕs, P , ϕ f)〉� � �+�〈B, nil〉�.

Proof. �+ corresponds to goal_check � {set_ops} �* goal_suc �. The argument is similar to Lemma 1. �
Lemma 15. (Faithfulness of G f) G f has a corresponding finite reaction sequence � �〈B, goal(ϕs, P , ϕ f)〉� � �+�〈B, ? f alse〉�.

Proof. �+ corresponds to goal_check � {set_ops} �* goal_fail �. The argument is similar to Lemma 1. �
Similar to the derivation rule �;, the derivation rule G; reduces the left-branch of the symbol �. The reaction

goal_reduce (Fig. 20d) pushes the reduction down the left-branch. To ensure the ordering between rules Gs , G f , and
G; , we explicitly match only on the case that the checks have already been performed. In other words, the goal will only
be pursued if neither the success or failure condition holds.

Lemma 16. (Faithfulness of G;) G; has a corresponding finite reaction sequence � �〈B, goal(ϕs, P1 � P2, ϕ f)〉� � �+�〈B′, goal(ϕs,

P ′
1 � P2, ϕ f)〉�.

Proof. Similar to Lemma 6. Assume 〈B, P1〉 �+〈B′, P ′
1〉. The initial state has form �B� ‖ Reduce.Goal.(SC.�ϕs� | FC.�ϕ f � |

Try.(�P1� | Cons.�P2�)) and so rule goal_reduce applies, which allows reduction of P1 to P ′
1, with updated B′ . �

The derivation rule G� likewise is very similar to the derivation rule �⊥ . Unlike in rule �⊥ , however, in rule G� we
keep the � structure in-place and replicate P2, thus giving the declarative goals their persistence. The Can reaction rule
goal_persist (Fig. 20e) encodes this case with the match of ReduceF ensuring the premise 〈B, P1〉 � holds. Through
duplication, we decouple the failure of the plan execution from the failure of the goal (as specified by success/failure con-
ditions). Finally, an additional reaction goal_persist_nil (Fig. 20f) enables the agent to persist even in the case where
the program executed successfully (but the goal success/failure did not hold).

Lemma 17. (Faithfulness of G�) G� has a corresponding finite reaction sequence � �〈B, goal(ϕs, P1 � P2, ϕ f)〉� � �+�〈B, goal(ϕs,

P2 � P2, ϕ f)〉�.
23

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
Fig. 20. Reactions for declarative goals with priorities: goal_init < {goal_reduce, goal_check, goal_fail, goal_suc} <

{goal_persist, goal_persist_nil}.

Proof. Two cases.

Case 1. If P1 = nil then �+ corresponds to goal_persist_nil �. Trivial.

Case 2. If 〈B, P1〉 �, then P1 must eventually reduce to ReduceF . Rule goal_persist � applies giving a result in the
form �〈B, goal(ϕs, P2 � P2, ϕ f)〉� as required. �

The derivation rule Ginit is encoded through reaction goal_init that sets up the required � structure. To ensure this
is applied at the right time, we have priority classes with goal_init< {goal_persist, goal_reduce} to ensure the
premise P �= P1 � P2 holds.

Lemma 18. (Faithfulness of Ginit) Ginit has a corresponding finite reaction sequence � �〈B, goal(ϕs, P , ϕ f)〉� � �+�〈B, goal(ϕs, P �
P , ϕ f)〉�.
24

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
Proof. �+ corresponds to goal_init �. Priority classes of reactions ensure P �= P1 � P2, as required. �
For declarative goals, due to persistence, there is no rule that propagates failures upwards.7

As with the previous lemmas, these extended features can be integrated easily into Theorem 1 to prove the extended
semantics is also faithful.

Theorem 2 (Faithfulness (extended)). For each Can step (including features of concurrency and declarative goal) 〈Ee, B, �〉 ⇒
〈E ′ e, B′, �′〉 there exists a corresponding finite sequence of reactions such that

�〈Ee,B,�〉� �+
�〈E ′ e,B′,�′〉� .

Proof. Follows from Lemmas 1–18. �
7. UAVs examples

To illustrate our modelling and verification framework, we consider three examples taken from UAV surveillance and
retrieval mission systems. The examples cover persistent patrol, concurrent sensing, and contingency handling in object
retrieval and highlight the three distinguishing features of Can: declarative goals, concurrency, and failure recovery.

7.1. Persistent patrol

UAVs are used in surveillance operations, with a UAV patrolling a pre-defined area to identify objects of interest. The
UAV can request refuelling when the battery is low, and parking mode should be activated when there is harsh weather.

The agent design and its corresponding bigraph encoding is in Fig. 21. The external event e_init1 (line 4) initi-
ates persistent patrol. There is only one plan (line 6) relevant to e_init1, whose context is always true (represented
by an empty region bigraph 1), thus always applicable, and whose plan-body is declarative goal goal(false,e_pa-
trol_task,false). The event e_patrol_task is persistent because the success and failure conditions never hold,
that is, we have an infinite process executing e_patrol_task. In practice, we require some flexibility in case of low bat-
tery or harsh weather. The plan for e_patrol_task (line 7) indicates the patrol task may need to be paused (i.e. followed
by the event e_pause), when the success condition is true, i.e. when battery_low or harsh_weather holds (added
to the belief base). If the pause is required and after achieving event e_pause (lines 9-10), the event e_patrol_task
will be pursued again. For succinct presentation, we note that the encoding of action such as patrol and wait are not
shown, but can be found in our model [30].

7.2. Concurrent sensing in one intention

UAVs may also be used for sensing tasks. In this case we consider a UAV that analyses dust particles, and performs aerial
photo collection, e.g. for analysis in post volcanic eruptions.

An agent design to achieve this concurrent sensing task is in Fig. 22. The external event e_init2 (line 4) initiates the
mission and the relevant plan (line 6) has tasks for dust monitoring (e_dust) and photo collection (e_photo) as the
concurrent programs in the plan-body. The on-board dust sensors require high-speed RAM to collect and analyse the data,
hence condition ram_free, and when the analysis is complete, results are written to storage (hence condition stor-
age_free), and sent back to the control. Similarly, to collect aerial photos, the UAV reserves and focuses the camera array
(focus_camera), then camera shots are compressed (zip_shot), and sent back. Recall, for successful completion, both
concurrent tasks have to complete successfully.

7.3. Concurrent sensing in two intentions

In Can, an agent can execute multiple intentions concurrently in an interleaved manner. As an example of concurrency
between intentions, we revise the task of concurrent sensing to use two different intentions. The design of this scenario is
given in Fig. 23. We see that, compared to the agent design in Fig. 22, we now use two separate external events—e_dust
and e_photo—resulting in two intentions. We reflect on the inability of verifying multiple intentions in Can, and detail the
difference of concurrency within an intention and concurrency among multiple intentions in Section 8.

7.4. Contingency handling for a retrieve task

UAVs may be used for object retrieval tasks, e.g. package delivery. An agent design for retrieval is in Fig. 24. It has one
(retrieve) task, initiated by external event e_retrv (line 4), which may be affected by engine or sensor malfunction, Event

7 Meeting the failure conditions does eventually lead to failure but this requires additional steps.
25

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
BDI Agent Design for Persistent Patrol

1 // Initial beliefs

2 ¬battery_low, ¬harsh_weather
3 // External events

4 e_init1

5 // Plan library

6 e_init1 : true <- goal(false, e_patrol_task, false)

7 e_patrol_task : true <- goal(sc, e_patrol, false); e_pause

8 e_patrol : true <- patrol

9 e_pause : battery_low <- request; wait; charge

10 e_pause : harsh_weather<- activate_parking

where sc= harsh_weather∨ battery_low.

Bigraph Encoding

big persistent_patrol =
Beliefs.(B(1) | B(2)) ‖ Desires.Ee1 ‖ Intentions.1

‖ Plans.(

PlanSete_init1.(Plan.(Pre.1 | PB.Goal.(SC.False | Ee_task1 | FC.False)))

| PlanSete_patrol_task.(Plan.(Pre.1 | PB.(Seq.(Goal.(SC.B(3) | Ee_patrol | FC.False) | Cons.Ee_pause))))

| PlanSete_patrol.(Plan.(Pre.1 | PB.�patrol�))

| PlanSete_pause .(

| Plan.(Pre.B(4) | PB.(Seq.(�request� | Cons.(Seq.(�wait� | Cons.�charge�)))))

| Plan.(Pre.B(5) | PB.�activate_parking�)))

where B(1) = ¬battery_low, B(2) = ¬harsh_weather, B(3) = sc,

B(4) = battery_low,and B(5) = harsh_weather.

Fig. 21. Persistent patrol: BDI agent design and bigraph encoding.

e_retrv is handled by five relevant plans available (lines 6 to 10). The first 3 plans provide different flight paths after
take-off, in which case the failure condition is (subsequent) engine or sensor malfunction. The last 2 plans (line 9 and 10)
indicate safe recovery in the event of engine or sensor malfunction.

7.5. Properties

To verify the designs, we generate a transition system from the BRS representing the agents (and their semantics).
The transition system has bigraphs as states and reactions as transitions. We can reason about static properties using
bigraph patterns [22] and dynamic properties using linear or branching time temporal logics such as Computation Tree logic
(CTL) [33], which we use in our examples. As we simply generate a transition system, the property specification language
is ultimately constrained by the logics the selected model checker supports. For example, in our case we can use the non-
probabilistic and non-reward logics provided in PRISM.

7.5.1. Bigraph patterns
Bigraph patterns are predicates on states: if the pattern matches the current state then the predicate is true.
We have found the bigraph patterns most useful for reasoning about BDI agents are often a fragment of the right-hand

side of reactions, i.e. they check that a desired or anticipated operation has taken place. For example, consider the state
predicate: there is a declarative goal corresponding to event e_patrol_task (i.e. goal(false, e_patrol_task,
false)). The bigraph pattern is

Goal.(SC.(False | id) | FC.(False | id) | Try.id)
26

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
BDI Agent Design for Concurrent Sensing in One Intention

1 // Initial beliefs

2 ram_free, storage_free

3 // External events

4 e_init2

5 // Plan library

6 e_init2 : true <- e_dust|| e_photo

7 e_dust : ram_free ∧ storage_free <- collect_dust; analyse; send_back

8 e_photo : ram_free ∧ storage_free <- focus_camera; save_shots; zip_shots

Bigraph Encoding

big concurrent_sensing =
Beliefs.(B(6) | B(7)) ‖ Desires.Ee_init2 ‖ Intentions.1

‖ Plans.(

PlanSete_init2.Plan.(Pre.1 | PB.(Conc.(L.Ee_dust | R.Ee_photo)))

| PlanSete_dust .Plan.(Pre.(B(6) | B(7)) | PB.(Seq.(�collect_dust� | Cons.(Seq.(�analyse� | Cons.�send_back�)))))

| PlanSete_photo .Plan.(Pre.(B(6) | B7) | PB.(Seq.(� f ocus_camera� | Cons.(Seq.(�save_shots� | Cons.�zip_shots�))))))

where B(6) = ram_free and B(7) = storage_free.

Fig. 22. Concurrent sensing in one intention: BDI agent design and bigraph encoding.

BDI Agent Design for Concurrent Sensing with Two Intentions

1 // Initial beliefs

2 ram_free, storage_free

3 // External events

4 e_dust, e_photo

5 // Plan library

6 e_dust : ram_free ∧ storage_free <- collect_dust; analyse; send_back

7 e_photo : ram_free ∧ storage_free <- focus_camera; save_shots; zip_shots

Bigraph Encoding

big concurrent_sensing =
Beliefs.(B(6) | B(7)) ‖ Desires.(Ee_dust | Ee_photo) ‖ Intentions.1

‖ Plans.(

PlanSete_dust .Plan.(Pre.(B(6) | B(7)) | PB.(Seq.(�collect_dust� | Cons.(Seq.(�analyse� | Cons.�send_back�)))))

| PlanSete_photo .Plan.(Pre.(B(6) | B7) | PB.(Seq.(� f ocus_camera� | Cons.(Seq.(�save_shots� | Cons.�zip_shots�))))))

where B(6) = ram_free and B(7) = storage_free.

Fig. 23. Concurrent sensing in two intentions: BDI agent design and bigraph encoding.

where SC is the success condition, FC the failure condition, and Try the plan choice �. The presence of Try indicates that
event e_patrol_task is within the given declarative goal and has been reduced to its set of relevant plans, from which
an applicable plan is selected, according to the right-hand side of the reaction given in Fig. 12b. As long as Try is present
(regardless of what is under it, i.e. Try.id), the declarative goal is being pursued.
27

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
BDI Agent Design of Retrieve Task

1 // Initial beliefs

2 ¬sensor_malfunc, ¬engine_malfunc
3 // External events

4 e_retrv

5 // Plan library

6 e_retrv : ϕ <- take_off; goal(at_destination, e_path1, fc); retrieve

7 e_retrv : ϕ <- take_off; goal(at_destination, e_path2, fc); retrieve

8 e_retrv : ϕ <- take_off; goal(at_destination, e_path3, fc); retrieve

9 e_retrv : sensor_malfunc <- return_base

10 e_retrv : engine_malfunc <- activate_parking; send_GPS

11 e_path1 : true <- navigate_path_1

12 e_path2 : true <- navigate_path_2

13 e_path3 : true <- navigate_path_3

where ϕ = ¬sensor_malfunc∧ ¬engine_malfunc,fc= sensor_malfunc∨ engine_malfunc

Bigraph Encoding

big retrieve_task =
Beliefs.(B(8) | B(9)) ‖ Desires.Ee_retrv ‖ Intentions.1

‖ Plans.(

PlanSete_retrv .(

Plan.(Pre .(B(8) | B(9)) | PB.(Seq .(�take_off� | Cons .(Seq .(Goal .(SC .B(10) | Ee_path1 | FC .B11) | Cons .�retrieve�)))))

| Plan.(Pre.(B(8) | B(9)) | PB.(Seq.(�take_off� | Cons.(Seq.(Goal.(SC.B(10)) | Ee_path2 | FC.B(11) | Cons.�retrieve�)))))

| Plan.(Pre.(B(8) | B(9)) | PB.(Seq.(�take_off� | Cons.(Seq.(Goal.(SC.B(10) | Ee_path3 | FC.B(11)) | Cons.�retrieve�)))))

| Plan.(Pre.B(12)) | PB.�return_base�)

| Plan.(Pre.B(13)) | PB.(Seq.(�activate_parking� | Cons.�send_G P S�))))

| PlanSete_path1.Plan.(Pre.1 | PB.(�navigate_path_1�))

| PlanSete_path2.Plan.(Pre.1 | PB.(�navigate_path_2�))

| PlanSete_path3.Plan.(Pre.1 | PB.(�navigate_path_3�)))

where B(8) = ¬sensor_malfunc, B(9) = ¬engine_malfunc, B(10) = at_destination, B(11) = fc,

B(12) = sensor_malfunc,and B(13) = engine_malfunc.

Fig. 24. Retrieval contingency: BDI agent design and bigraph encoding.

7.5.2. Example properties

Example 1 (Persistent patrol). A key property is that the goal corresponding to event e_patrol_task is persistent:
A[G Fϕ1], where

ϕ1
def= Goal.(SC.(False | id) | FC.(False | id) | Try.id)

As expected the property holds.

Example 2 (Concurrent sensing in one intention). A useful property to investigate is whether it is possible to complete both
sensing tasks regardless of their interleaving. Recall that in Can semantics, whenever an intention is completed or fails,
the agent will simply remove it from the intention base (Aupdate Fig. 15). Therefore, to make sure that an intention is
28

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
successfully achieved, we have to ensure that a given intention is indeed removed only after being completed successfully.
We denote the bigraph pattern for the successful completion of a given intention as ϕ2

def= Intent.1, the failure of completion
of an intention ϕ3

def= Intent.ReduceF, and the removal of an intention from intention base ϕ4
def= Intentions.1. Bigraph pattern

ϕ4 specifies the removal of an intention from the intention base if and only if it is the only intention in the base. If there
is more than one intention, it is impossible to reason about which intention is removed because there are no intention
identifiers in CAN. We reflect on this lack in Section 8.6. Given the bigraph patterns above, the property is A[F(ϕ2 ∧ Xϕ4)].
This property is false, and we find that E[F(ϕ3 ∧ Xϕ4)] holds (i.e. there exists a path for which eventually the intention
is removed after being failed). This is because concurrency can introduce undesirable race conditions.8 For example, the
action send_back in line 7 needs to be executed before the action save_shots is executed, to free required storage.
This example highlights the benefits of a formal model for analysis at design time.

Example 3 (Contingency handling). Similar to Example 2, a desirable property is that regardless of any malfunction, the
intention for event e_retr is removed after successful completion. The property is A[F(ϕ2 ∧ Xϕ4)] and it holds.

Before we give the results of verification, recall that our bigraph encoding introduces intermediate states that do not
correspond to an agent step. Therefore, the operator X (next) has to be used carefully; some properties may require modifi-
cation, because e.g. the next operator refers to the next internal state, not the next agent state. For example, there may be
belief checks between agent steps. In Examples 2 and 3 above, no modifications were required.

7.6. Results

For automatic verification we exported the transition system to the PRISM model-checker9 by assuming all transitions
occur with equal probability. The size of transition system10 generated by BigraphER and verification times are as follows:

Example States Transitions Build time (s) Ver. time (s)

Persistent patrol 239 287 7.30 0.081
Concurrent sensing (1 Intent) 731 879 20.47 0.01
Concurrent sensing (2 Intents) 856 1074 15.11 N/A
Contingency handling 644 922 79.98 0.002

While contingency handling has fewer states/transitions than the concurrent sensing example, it takes more time to
generate the transition system. We attribute this to the former containing more bigraph entities. Similarly, while concurrent
sensing in two intentions has more states/transition than its one intention counterpart, it takes less time to generate the
transition system due to having fewer bigraph entities.

8. Reflections

We reflect on the insights gained into the Can language through the process of building the bigraph model and detail
our first-hand experience of the theoretical and practical value of Bigraphs for encoding agent languages. We stress that
our reflections on Can should not be taken as criticism of Can in any sense. On the contrary, we hope to show that the
explicitness of the bigraph encoding is useful, e.g. to show areas of semantics with too much (resp. too little) information,
and to aid in the continuous advancement of BDI family languages, in particular, from the point of verification and validation.

8.1. Modularity in semantics of Can

A distinguished characteristic of Can (similar to Modular Structural Operational Semantics (MSOS) [34]) is that the tran-
sition rules for each construct can be given incrementally, i.e. a modular operational semantics. In this case, the modularity
in Can (same as in 3APL) separates how to evolve an intention (i.e. the intention-level semantics) from how to evolve the
whole agent (i.e. the agent-level semantics). This approach has its merits, for example, we can easily extend or modify one
side of the semantics (e.g. the agent-level) without altering the other one. This was illustrated when adding the concurrency
and declarative goals extensions (Section 6). The extensions only change intention-level steps, and as such, do not affect the
overall faithfulness theorem as this is defined over agent-level steps.

The two-levels of semantics could be useful for verification. For example, we may consider only the agent-level transi-
tions which would give snapshots of the agent state, without any information on how choices were made. In the bigraph

8 This race condition is within the agent design itself, and should not be confused with the race between reaction rules that update the belief sets (a
bigraph model implementation detail).

9 Currently the only model-checker format supported by BigraphER.
10 Build times were obtained on a laptop with a 16-core Intel Core i7-11800H at 2.30 GHz (hyperthreaded), 16 GB memory, and running 64-bit Ubuntu

Linux 20.04.3 LTS.
29

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
model we do not make a distinction between agent-level and intention-level transitions, and both appear in the resulting
output. The bridging of agent-level and intention-level transitions is performed by the introduction of the Reduce entity.
For example, the reaction rule intention_step that encodes the agent-level derivation rule Asteps introduces a Reduce
entity to an intention, requesting it to be reduced according to the intention-level semantics. The use of instantaneous
reaction rules, that do not show up in the resulting transition system, would allow only agent-level steps to be analysed
without changes to the reaction rules themselves.

8.2. Inconsistency of semantics in Can literature

In the literature, there are subtle differences between definitions of the Can semantics. In particular, between [6]
and [23]. For example, consider the �⊥ rule from the two works above:

P1 �= nil 〈B, P1〉 �

〈B, P1 � P2〉 → 〈B, P2〉 �⊥ in [6]

P1 �= nil 〈B, P1〉 � 〈B, P2〉 → 〈B′, P ′
2〉

〈B, P1 � P2〉 → 〈B′, P ′
2〉

�⊥ in [23]

In [6], the rule �⊥ is only dependent upon the irreducibility of the program P1. However, in [23], not only is it depen-
dent upon the irreducibility of P1, but, within the same operation, the reducibility of P2.

This change is significant as, in the first case, we wait to do failure recovery. This can allow the current belief base to be
updated before selecting a new plan (in all cases P2 has the form e : (|�|)). In the second case there is no scope to wait for
belief base changes.

It is not immediately clear which approach is better in practice. One benefit of a formal model is that we can begin to
unpick these questions by substituting the current try_failure reaction for a modified version.

8.3. Redundant event names

The Can language includes the form e : (|�|) representing a set of relevant plans which can be used to address the
event e. This set is updated as plans are selected and executed. For example, when an applicable plan is selected (i.e.
ϕ : P ∈ � and B |= ϕ), it will be removed from the set of remaining plans (i.e. e : (| � \ {ϕ : P } |)). However, after a set of
relevant plans is selected from the plan library, the event name e becomes redundant in the sense that it is never used by
any Can semantic rules. This is seen clearly in the bigraph model, where only reduce_event (in Fig. 11) utilises the event
name link. Other rules always match the event name as open (connected to 0 or more other entities). This suggests that
the form of plans within the plan library, and those within intentions should be different, e.g. e : (|�|) and (|�|).

8.4. No difference between intention success and failure

As a high-level planning language, Can remains agnostic to many important issues in practice. One such issue is the
inability to tell if an intention completed successfully, or with a failure. The derivation rule Aupdate in Fig. 6 simply removes
a completed intention from the intention base, namely an intention nil or one that is failed and cannot make any further
transition. Therefore, the completion of an intention is not equivalent to the achievement of an intention. To verify the
achievement of an intention (which in practice is the most important property to check), we also have to ensure that
its completion is not due to the failure. This is precisely how we verify the achievement of an intention in Section 7.5.2.
Therefore, in our bigraph model, we have to encode the derivation rule Aupdate into two cases, namely intention_done_F
for failure case and intention_done_succ for success case.

8.5. Oracle for failure

Failure in Can semantics is denoted by 〈B, P1〉 � as the negative premise in the related derivation rule (e.g. �⊥).
Therefore, to be able to apply the rule �⊥ , the agent somehow can “look-ahead” to the result of the inner-reduction,
i.e. there is some oracle that determines if the inner-reduction is possible. However, in practice (e.g. our bigraph encoding),
no oracle exists, and the agent has to explicitly to try progress a step to see if it reduces. In other words, unlike the
derivation rules which, to some extent, have the impression the failure occurs via one single rule 〈B, P1〉 �, it actually
involves a strict partial execution of other rules. It also explains why we convert the negative premise into the positive
premise in the actual encoding with additional token ReduceF. It can be clearly seen in Fig. 16 where, before an action is
deemed as un-executable, its pre-condition has to be actually checked to be false according to the belief base.

8.6. Absence of meta-level reasoning

While it is possible to reason about agents when only a single intention is involved – for example through checking a
property that checks if an intention failed before it was removed (see Section 7.5.2) – these approaches do not apply when
30

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
there are more than one concurrent intentions. The main issue here is that intentions lack identifiers. If we want to stay
within the semantics in Can, approaches to identifying specific intentions include (1) fixing the last program within any
intention to be unique to allow checking when this specific program is removed, or (2) ensuring actions add unique beliefs
however this requires knowing ahead of time the actions that will be executed in success/failure cases.

Ideally, intentions would have unique identifier to aid verification. Adding such an identifier is straightforward by
replacing P ∈ � with 〈identifier, P 〉 ∈ �. As such, to track an intention is removed, we simply have a bigraph pattern
Intent.(identifier | id) where identifier is the identifier of the intention and id the site that abstracts away specific details
of the intention. We argue that by indexing the intentions and further labelling its status (e.g. active or suspended)—tackled
by some promising work [35,36]—that allows reasoning on intentions provides strong starting point for next level of agent
verification, e.g. in the context of interacting with users.

Another area where keeping meta-information available is useful is to allow tracking events to the intentions that are
handling those events. In the current semantics, when an event is processed (by Aevent) it is removed completely from the
desires structure and replaced by the set of relevant plans within an intention. As we execute the plans we lose track of
which event e generated that intention (i.e. the means-end relations).

8.7. Concurrency within vs. among intentions

One important decision and agent designer needs to make is whether to use internal concurrency (through ‖) or inten-
tion concurrency via multiple events. Without appropriate intention labelling (discussed in Section 8.6), it remains difficult
to write formal verification properties when using multiple-intentions. In practice, concurrency among intentions requires
significantly more state transitions than its counterpart seen in Section 7.6. This should not come as a surprise as in con-
currency among two intentions, the agent has two choices (as to decide which intention to progress) on each step, while
the agent only makes a decision to progress the left or right part of concurrency within an intention. That is, there is more
interleaving to analyse with the multiple intentions.

8.8. Experience on theoretical and practical bigraph encoding approach

Finally, we reflect on bigraphs as an (agent) language encoding framework from both a theoretical and a practical per-
spective.

We found bigraphs to be useful and easy to use for encoding the syntax of Can. It required a modest number of (core)
entities (Table 3) and there was a very direct translation of Can syntax to bigraphs (Fig. 3) thanks in part to the inductively
defined (compositional) nature of bigraphs. One benefit, often not seen in other modelling formalisms, is the use of parallel
regions to separate models into different, but interacting, perspectives. We had four perspectives: Belief, Desire, Intention and
Plan and this helped to separate concerns and make the encoding process easier to manage. We expect perspectives to play
a large role in extending the model, for example, adding an Environment perspective to model when external events can
happen. The use of links in bigraphs has been proven a useful feature, allowing and event to directly connect to the set of
plans that can respond to it. Using links decreases the likelihood of human errors, e.g. misspelling of event names

For encoding semantics, allowing user-specified reaction rules facilitated a direct mapping of transition rules of Can,
which led to the establishment of a faithful encoding where it was possible to sketch proofs based on finite rule sets. One
area where we found bigraphs particularly useful was analysing the treatment of concurrency within and among multiple
intentions (Section 8.7). Being able to draw the rules diagrammatically proved highly useful for explaining the model to
others, and noticing potential errors at a glance (much more than text based syntax, although this is anecdotal evidence
only at this point).

For debugging, the graphical output of each state in the transition system provided by BigraphER provided a highly
visual debugging experience and enabled us to locate the bugs with ease. However, we found that using reaction rule
priorities can often make it difficult to know exactly what rules can fire when, and this can lead to subtle bugs. Another
disadvantage is that, as bigraphs are general purpose, we often have to provide extra rules for operations that are built-in
for other formalisms, e.g. set operations. In terms of performance, BigraphER performs well in general, but, due to matching
semantics, the time required to generate a transition system is dependent on both the number of transitions and the
number of bigraph entities in the agent plan library (potentially large for complex agents). However, our latest work [37]
which utilises a subgraph isomorphism solver improved the matching performance by over two orders of magnitude on a
range of problem instances drawn from real-world mixed-reality, protocol, and conference models.

For verification, unlike other approaches, e.g. both Maude-based and AIL-based approaches that rely on their own dedi-
cated model checkers, we instead export a predicate-labelled transition system for use with existing model checking tools
such as PRISM. This allows a wide range of highly-performance tools, including different logics etc., to be used, however it
does limit, for example, the amount of symbolic analysis these tools can perform, leading to degraded performance.

Overall we would recommend bigraphs as a tool for working with programming languages. We believe there is much
to be gained including from the diagrammatic notation, explicit entity linking, multi-perspective modelling, and efficient
tooling.
31

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
9. Related work

Reasoning about BDI agents through model checking has been well explored. A key work in this area [12] reports
a translation of AgentSpeak programs to both the Promela modelling language and Java, and shows how to apply the
Spin [14] model checker and Java PathFinder program model checker to verify the agents. Similar to our bigraph encod-
ing, the translation of AgentSpeak programs in Promela in [12] provides an encoding the semantics of AgentSpeak(F)—the
finite state version of AgentSpeak—in Promela. However, there is no formal faithfulness establishment of such a translation
provided and it is limited to the AgentSpeak language that does not contain features such as declarative goals. The transla-
tion of AgentSpeak programs to Java facilitates direct verification of the implementation of an agent rather than an abstract
model specification (as with Promela) by symbolically analysing the underlying Java bytecodes. In both cases, the proprieties
checked are specified in a simplified BDI logic language mapped down in linear temporal logic (LTL) formula [38].

Comparing the translation experience of these two translation in [12], Java stood out as a more promising approach
(as a general purpose language) compared to Promela (often used for the verification of communication protocols). Many
have built upon this Java-based verification approach. In particular, recent work implements a BDI agent programming
infrastructure as a set of Java classes – the Agent Infrastructure Layer (AIL) [15]. As a matter of fact, the Gwendolen BDI
language [39] provides the default semantics for the AIL, and is designed with verification in mind by including extra
book-keeping and transition rules that purely assist verification.

The AIL has been further developed [40] to support the verification of heterogeneous multi-agent systems by allowing
different agent programming languages to be used within the same AIL framework. Although the AIL supports heteroge-
neous agents, to date the BDI programming languages implemented in the AIL [41] is tightly bounded to Gwendolen and
its extensions (e.g. [42]) along with another language named GOAL [43]. Crucially, what these approaches verify is the
implementation of a given language. The faithfulness of the implementation to the language semantics is often omitted
for convenience. Utilising Java PathFinder (and its enhanced version [40]) has the advantage of bypassing the need of a
mathematical model by deriving the model directly from the program codes. However it typically suffers from a significant
performance bottleneck due to the symbolic execution of Java bytecode. Agent properties for AIL are usually specified in LTL
fashion, There is, however, an exception in [44] where the model generated by Java PathFinder is converted to the input
language of PRISM [45] to, e.g. provide access to probabilistic property specification. Unfortunately the conversion to PRISM
does not maintain direct link between the implemented program and the model being verified, e.g. it might be difficult to
reflect back into the application when creating counter examples. Meanwhile, by simplifying the structure and execution of
AgentSpeak (deviating from mainstream BDI agents), it can also facilitate the verification of probabilistic and time bound
properties through PRISM [46]. Finally, there is promising progress to verify the hybrid autonomous system in which the
high-level is discrete logic-based framework (modelled by BDI agents) and the low-level is a continuous control system [47].

The two main BDI languages implemented in AIL are Gwendolen and GOAL. Unlike main-stream BDI programming lan-
guages, e.g. AgentSpeak, GOAL is a pure reactive system and does not select pre-defined plans from a library but instead
selects individual actions (or a sequence of actions). Like Can, Gwendolen handles declarative goals, failure recovery and
concurrency with some differences. In Gwendolen, declarative goals make statements about the beliefs the agent wishes to
hold and remains a goal until the agent gains the appropriate beliefs. As such, the declarative information in Gwendolen
is only carried for the initial goal of the intention, no declarative information is carried for any of its active sub-events.
For example, if beliefs sought hold, the sub-event will still be executed to the end. Meanwhile, in CAN, the declarative
information is carried for any stage of evolution of programs in the declarative goal. Once the success condition holds, the
related program is halted immediately. Gwendolen does not allow goal failure conditions so is unable to decouple goal
failure from plan failure. For failure recovery, Gwendolen is explicitly programmed with the appropriate plan revision rules
(as meta-level rules) which specify a prefix of the current plan to be dropped and replaced by another. Finally, concurrency
in Gwendolen is only allowed in the intention level (i.e. no concurrent execution within an intention), and, by default, is
conducted in first-in-first-out fashion to manage interleaving.

Work exists where the operational semantics of (general) agent programming languages is explicitly encoded directly in
verification languages. For example, [48] presents a programming language for multi-agent systems, MABLE, that is trans-
lated to Promela and verified using Spin. Another work [49] develops a verification framework for multi-agent systems
specified by the cognitive agents specification language (CASL). This framework is based on the prototype verification sys-
tem (PVS) and facilitates theorem to verify properties of CASL specifications. Both these agent languages are not specifically
geared towards BDI-style rational agents but provide more general tools for the analysis of agents. None of these works
provides a formal establishment of the faithful translation between the given agent language and verification language.

Besides Promela, term-rewriting, specifically in Maude [21], has been used to encode BDI agent languages, allowing
verification of temporal properties with the Maude LTL model checker [50]. For example, Maude has been used to directly
encode GOAL semantics in a single agent setting [51]. In a multi-agent setting, [52] shows how both Jason and 3APL
programs can be translated into the language meta-APL and then encodes meta-APL semantics in Maude for subsequent
verification. Besides the approaches based on existing verification tools/model checkers (including Spin, Java PathFinder, and
Maude), there is a different verification approach [53] that performs the verification by modelling the interpreter (i.e. the
implementation) of the GOAL language. The agent interpreter is used to generate the state space and a model checker is
built on top of this interpreter with two components: 1) a translation the linear temporal properties to a property space,
and 2) a means to evaluate the property using a search over both the property and state spaces. The authors provide an
32

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
empirical comparison for the GOAL language of its interpreter-based, AIL-based, and Maude-based verification approach.
Interestingly, it found that the Maude-based verification approach was unable to deal even with the simple toy examples
due to high verification times.

Recent work continues to advance the state-of-the-art of agent verification problems. For example, there has been con-
siderable work on developing various state-space reduction techniques to improve the efficiency of verification and support
richer property specifications for large agent systems. The work [54] applies program slicing techniques—that have been
successfully used in conventional programming languages—to reduce the state-space required in agent program verification
problem. The slicing technique eliminates details of the program that are not relevant to the property being analysed,
i.e. property-based slicing. This work was extended [55] to provide detailed correctness and complexity results for a
property-based slicing algorithm for AgentSpeak. The work [56] takes this even further by proposing a new, and improved,
slicing method. Noticeably, there is another work [57] that combines two state-space reduction techniques: property-based
slicing and partial order reduction for verifying the GOAL language.

Bigraphs have been shown [24] to be suitable for encoding process algebras such as CCS [58], Mobile Process [59], and
π -calculus [18] as well as the Actor programming model [60]. Recently, there is also a growing trend to specify and verify
agent-based systems via bigraphs, in particular, multi-agent systems. However, most of them still remain at the stage of
proof of concept. For example, the work [61] proposes a methodology for modelling and simulating multi-agent systems
via bigraphs. The core idea is that the containment relation of bigraphs mirrors the administrative relations of agents while
reaction rules model agent reconfigurations, e.g. bigraph destruction translates into agent termination. One work that is
perhaps closest to ours is [62], which also models BDI agents via bigraphs. However, it considers multi-agent systems, and
treats the internal reasoning of each BDI agent as a black box. As a result, they provide no details regarding how the agents
behave in an environment.

10. Future work

The encoding of BDI agents in bigraphs is our first step laying out a foundation for more advanced reasoning. As future
work, we have in mind two main extensions: probabilistic reasoning, in particular, plan selection and intention trade-off,
and dynamic environments.

In general, there may be several applicable plans which achieve a given event. The agent has to select one and it may be
desirable to specify what is “most appropriate” at that time, which may depend upon different, and possibly domain-specific
characteristics, e.g. cost and preference. Additionally, the agent may be pursuing a set of concurrent intentions, i.e. there is
concurrency between the top-level external events. Similar to the plans, intention, it may be desirable to again specify “most
appropriate” e.g. more urgent.

We will develop a more nuanced approach to handling plan selection and intention scheduling by assigning weights
(to plans and events). These will be encoded by reaction rules with weights using probabilistic bigraphs [63] that export
Discrete-time Markov chains (DTMCs). As we export explicit transition systems, this approach can support many probabilistic
logics such as PCTL [64] found in PRISM. We have begun preliminary work in this direction [65].

Our current encoding of BDI agents is limited to a self-static environment, i.e. the environment changes only when the
agent changes it. We plan to develop a self-dynamic environment and will extend the mechanism of failure recovery to
allow re-selection of previously failed plans. This will not only increase the persistence of an agent, but also increase the
likelihood of success by taking advantage of environmental changes.

Finally, we also plan to address the problems of multi-agent systems. While it can be tempting to model the multi-agent
system in an interleaved fashion (i.e. treating each agent as a thread within a system), a true multi-agent system should
support true concurrency (e.g. one agent executes an action while another agent is performing another action). Recently,
there is a promising work on true concurrency in BDI agent systems [66], which may be helpful to achieve this goal. Recent
work [67] has also addressed scenarios where autonomous agents collaborate with humans to achieve a shared goal.

11. Conclusion

Rational agents, such as Belief-Desire-Intention (BDI) agents, will play a key role in future autonomous systems and it
is essential we can reason about their behaviours, and provide early, i.e. design-time, indications of potential problems,
e.g. deadlocks causes by shared resources.

We have presented a framework, based on Milner’s bigraphs, for modelling and verifying BDI agents specified in the Can

language. We believe this is the first executable semantics of Can, allowing verification of abstract agent programs, rather
than verification based on a specific implementation of Can. The use of four perspectives in the bigraph model: Belief,
Desire, Intention and Plan, helps us to separate concerns in the encoding and offers a clear visualisation of the resulting
model.

The two key functions are the syntax encoding �·� and � �·� � that enables the behavioural encoding. The former has the
added feature of introducing event indices for plans, which decreases errors and aids search. The latter is a bridge between
agent-level and intention-level steps. Bigraph parallelism indicates how the belief base is the environment for reduction and
conditional bigraphs allow us to prioritise reaction rules, which simplifies the encoding.
33

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
We have shown that the encoding of Can agents in bigraphs is faithful by proving any Can step is captured by a finite
sequence of bigraph reaction rules, and we have shown the approach is practical through three example UAV applications.
In each case, generating and verifying the model took no more than a few minutes.

This work has also highlighted many interesting features of the current semantics of Can, such as the inability to dis-
tinguish between the success and failure of an intention and lack of meta-level reasoning, and it lays the foundation for
future modelling work. We envisage an extended model (and hence extended semantics) that features probabilistic choice
and dynamic environments – allowing quantitative model checking of agent programs.

CRediT authorship contribution statement

Blair Archibald: Visualisation, Methodology, Writing. Muffy Calder: Reviewing, Editing. Michele Sevegnani: Reviewing,
Editing. Mengwei Xu: Conceptualisation, Methodology, Writing – Original draft preparation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This work is supported by the Engineering and Physical Sciences Research Council, under PETRAS SRF grant MAGIC
(EP/S035362/1) and S4: Science of Sensor Systems Software (EP/N007565/1).

References

[1] M. Bratman, Intention, Plans, and Practical Reason, Harvard University Press, 1987.
[2] A.S. Rao, AgentSpeak (L): BDI agents speak out in a logical computable language, in: Proceedings of European Workshop on Modelling Autonomous

Agents in a Multi-Agent World, Springer, 1996, pp. 42–55.
[3] K.V. Hindriks, F.S.D. Boer, W.V.d. Hoek, J.-J.C. Meyer, Agent programming in 3APL, Auton. Agents Multi-Agent Syst. 2 (4) (1999) 357–401.
[4] M. Dastani, 2APL: a practical agent programming language, Auton. Agents Multi-Agent Syst. 16 (3) (2008) 214–248.
[5] R. Bordini, J. Hübner, M. Wooldridge, Programming Multi-Agent Systems in AgentSpeak Using Jason, vol. 8, John Wiley & Sons, 2007.
[6] S. Sardina, L.d. Silva, L. Padgham, Hierarchical planning in BDI agent programming languages: a formal approach, in: Proceedings of the International

Joint Conference on Autonomous Agents and Multiagent Systems, 2006, pp. 1001–1008.
[7] S.S. Benfield, J. Hendrickson, D. Galanti, Making a strong business case for multiagent technology, in: Proceedings of the Fifth International Joint

Conference on Autonomous Agents and Multiagent Systems, ACM, 2006, pp. 10–15.
[8] L. Braubach, A. Pokahr, W. Lamersdorf, Negotiation-based patient scheduling in hospitals, in: Advanced Intelligent Computational Technologies and

Decision Support Systems, 2014, pp. 107–121.
[9] S. McArthur, E. Davidson, V. Catterson, A. Dimeas, N. Hatziargyriou, F. Ponci, T. Funabashi, Multi-agent systems for power engineering applications –

part i: concepts, approaches, and technical challenges, vol. 22 (2007), IEEE 22 (4) 1743–1752.
[10] G. Brat, E. Denney, D. Giannakopoulou, J. Frank, A. Jonsson, Verification of autonomous systems for space applications, in: Proceedings of IEEE Aerospace

Conference, 2006.
[11] L. Lestingi, M. Askarpour, M.M. Bersani, M. Rossi, Formal verification of human-robot interaction in healthcare scenarios, in: Proceedings of International

Conference on Software Engineering and Formal Methods, Springer, 2020, pp. 303–324.
[12] R.H. Bordini, M. Fisher, W. Visser, M. Wooldridge, Verifying multi-agent programs by model checking, Auton. Agents Multi-Agent Syst. 12 (2) (2006)

239–256.
[13] G.J. Holzmann, W.S. Lieberman, Design and Validation of Computer Protocols, vol. 512, Prentice Hall, Englewood Cliffs, 1991.
[14] G.J. Holzmann, The model checker SPIN, IEEE Trans. Softw. Eng. 23 (5) (1997) 279–295.
[15] L.A. Dennis, B. Farwer, R.H. Bordini, M. Fisher, A flexible framework for verifying agent programs, in: Proceedings of the International Joint Conference

on Autonomous Agents and Multiagent Systems, 2008, pp. 1303–1306.
[16] G. Brat, K. Havelund, S. Park, W. Visser, Model checking programs, in: Proceedings of IEEE International Conference on Automated Software Engineering,

IEEE, 2000, pp. 3–11.
[17] R. Milner, Bigraphs and their algebra, Electron. Notes Theor. Comput. Sci. 209 (2008) 5–19.
[18] M. Bundgaard, V. Sassone, Typed polyadic pi-calculus in bigraphs, in: Proceedings of ACM SIGPLAN International Conference on Principles and Practice

of Declarative Programming, 2006, pp. 1–12.
[19] M. Sevegnani, M. Calder, BigraphER: rewriting and analysis engine for bigraphs, in: Proceedings of International Conference on Computer Aided Verifi-

cation, Springer, 2016, pp. 494–501.
[20] B. Archibald, C. Muffy, M. Sevegnani, Conditional bigraphs, in: International Conference on Graph Transformation, Springer, 2020, pp. 3–19.
[21] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martí-Oliet, J. Meseguer, R. Rubio, C. Talcott, Maude manual (version 3.0), in: SRI International,

2020.
[22] S. Benford, M. Calder, T. Rodden, M. Sevegnani, On lions, impala, and bigraphs: modelling interactions in physical/virtual spaces, ACM Trans. Comput.-

Hum. Interact. 23 (2) (2016) 1–56.
[23] S. Sardina, L. Padgham, A BDI agent programming language with failure handling, declarative goals, and planning, Auton. Agents Multi-Agent Syst.

(2011) 18–70.
[24] R. Milner, The Space and Motion of Communicating Agents, Cambridge University Press, 2009.
[25] J. Meseguer, Twenty years of rewriting logic, J. Log. Algebraic Methods Program. 81 (7–8) (2012) 721–781, https://doi .org /10 .1016 /j .jlap .2012 .06 .003.
[26] M. Calder, M. Sevegnani, Modelling IEEE 802.11 CSMA/CA RTS/CTS with stochastic bigraphs with sharing, Form. Asp. Comput. 26 (3) (2014) 537–561.
[27] G.D. Plotkin, A Structural Approach to Operational Semantics, Lecture Notes, Aarhus University, Denmark, 1981.
[28] B. Logan, J. Thangarajah, N. Yorke-Smith, Progressing intention progression: a call for a goal-plan tree contest, in: Proceedings of International Confer-

ence on Autonomous Agents and Multiagent Systems, 2017, pp. 768–772.
34

http://refhub.elsevier.com/S0167-6423(21)00153-2/bib72F49B0AB9E420C5C039B21959406E65s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibEC83A5CFEEFCF0BB7E1EF8441C708B22s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibEC83A5CFEEFCF0BB7E1EF8441C708B22s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib82A4F8CA44CA42F465380824EB2ADAA6s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib78AA75BBD3EB8D5DFDA7836873577E4Es1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib367399923877E01CBD624BDAA008BDD2s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibB199E49C97678F99DD90811CBEC96BB2s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibB199E49C97678F99DD90811CBEC96BB2s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib967D226EA30973A2D87C94B2D12B3429s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib967D226EA30973A2D87C94B2D12B3429s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib09C172433A35FFD0341F4A1B4FB84A50s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib09C172433A35FFD0341F4A1B4FB84A50s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib3C8AEA2A59E78F436DCBE0B19F410C8As1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib3C8AEA2A59E78F436DCBE0B19F410C8As1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib3EF4B842BC30EADE9F975F30B1C0ACF4s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib3EF4B842BC30EADE9F975F30B1C0ACF4s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib8D9251A410047DBC7F806A7C804434B2s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib8D9251A410047DBC7F806A7C804434B2s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib4BB5461C96A77C1F4DD3AC6D8F048E29s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib4BB5461C96A77C1F4DD3AC6D8F048E29s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib3B6BE443C181372FD4757D5DC8138B72s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibBEFF96FB3FB7A51D03C32829C3FABC7Ds1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib470080B827FBA2ECE92C6A1F89BB5876s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib470080B827FBA2ECE92C6A1F89BB5876s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib5100A4AED93E9A8249055443F941DD36s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib5100A4AED93E9A8249055443F941DD36s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib1845E40EEFF05E55187E7EF15ED7CF08s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib3E4621DFFEF1E6ED22B1A469696F3AC3s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib3E4621DFFEF1E6ED22B1A469696F3AC3s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibDC9746C1B1DFC5703B3D21537AF93A14s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibDC9746C1B1DFC5703B3D21537AF93A14s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib4FBD104155FF4CC6A301E09D35DEFC4Ds1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib99BE58D468C07D2A33DF023F59CE3C6Cs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib99BE58D468C07D2A33DF023F59CE3C6Cs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibE8950795E95BD5599C59A473B1420751s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibE8950795E95BD5599C59A473B1420751s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib5A3D12B54929C287529B7F9C05FB11DFs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib5A3D12B54929C287529B7F9C05FB11DFs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibBE61C91D283622DF6DC1522E0AE70C1Bs1
https://doi.org/10.1016/j.jlap.2012.06.003
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib7F369F878901DEAE6CC64695436F404As1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib5F12A1A34FBBD10196D923BEB59DF0D4s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib83C7539540CEFF090A740BAB75B5127Bs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib83C7539540CEFF090A740BAB75B5127Bs1

B. Archibald, M. Calder, M. Sevegnani et al. Science of Computer Programming 215 (2022) 102760
[29] M. Xu, K. McAreavey, K. Bauters, W. Liu, Intention interleaving via classical replanning, in: Proceedings of International Conference on Tools with
Artificial Intelligence, 2019, pp. 85–92.

[30] B. Archibald, M. Calder, M. Sevegnani, M. Xu, Modelling and verifying BDI agents with bigraphs – models, [Online]. Available: https://doi .org /10 .5281 /
zenodo .4472541, Jan. 2020.

[31] J.F. Groote, Transition system specifications with negative premises, Theor. Comput. Sci. 118 (2) (1993) 263–299.
[32] R.J. van Glabbeek, The meaning of negative premises in transition system specifications ii, J. Log. Algebraic Program. 60 (2004) 229–258.
[33] E.M. Clarke, E.A. Emerson, Design and synthesis of synchronization skeletons using branching time temporal logic, in: Proceedings of Workshop on

Logic of Programs, Springer, 1981, pp. 52–71.
[34] P.D. Mosses, Modular structural operational semantics, J. Log. Algebraic Methods Program. 60–61 (2004) 195–228, https://doi .org /10 .1016 /j .jlap .2004 .

03 .008 [Online].
[35] J. Harland, D.N. Morley, J. Thangarajah, N. Yorke-Smith, An operational semantics for the goal life-cycle in BDI agents, Auton. Agents Multi-Agent Syst.

28 (4) (2014) 682–719.
[36] J. Harland, D.N. Morley, J. Thangarajah, N. Yorke-Smith, Aborting, suspending, and resuming goals and plans in BDI agents, Auton. Agents Multi-Agent

Syst. 31 (2) (2017) 288–331.
[37] B. Archibald, K. Burns, C. McCreesh, M. Sevegnani, Practical bigraphs via subgraph isomorphism, in: 27th International Conference on Principles and

Practice of Constraint Programming, 2021.
[38] E.A. Emerson, Temporal and modal logic, in: Formal Models and Semantics, Elsevier, 1990, pp. 995–1072.
[39] L.A. Dennis, Gwendolen semantics: 2017, Technical Report ULCS-17-001, University of Liverpool, 2017.
[40] L.A. Dennis, M. Fisher, M.P. Webster, R.H. Bordini, Model checking agent programming languages, Autom. Softw. Eng. 19 (1) (2012) 5–63.
[41] L.A. Dennis, The MCAPL framework including the agent infrastructure layer and agent Java PathFinder, J. Open Sour. Softw. (2018).
[42] L. Dennis, M. Fisher, M. Slavkovik, M. Webster, Formal verification of ethical choices in autonomous systems, Robot. Auton. Syst. 77 (2016) 1–14.
[43] K.V. Hindriks, F.S. De Boer, W. Van Der Hoek, J.-J.C. Meyer, Agent programming with declarative goals, in: Proceedings of International Workshop on

Agent Theories, Architectures, and Languages, Springer, 2000, pp. 228–243.
[44] L.A. Dennis, M. Fisher, M. Webster, Two-stage agent program verification, J. Log. Comput. 28 (3) (2018) 499–523.
[45] M. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: verification of probabilistic real-time systems, in: Proceedings of International Conference on

Computer Aided Verification, Springer, 2011, pp. 585–591.
[46] P. Izzo, H. Qu, S.M. Veres, A stochastically verifiable autonomous control architecture with reasoning, in: Proceedings of IEEE Conference on Decision

and Control, IEEE, 2016, pp. 4985–4991.
[47] L.A. Dennis, M. Fisher, N.K. Lincoln, A. Lisitsa, S.M. Veres, Practical verification of decision-making in agent-based autonomous systems, Autom. Softw.

Eng. 23 (3) (2016) 305–359.
[48] M. Wooldridge, M.-P. Huget, M. Fisher, S. Parsons, Model checking for multiagent systems: the MABLE language and its applications, Int. J. Artif. Intell.

Tools 15 (02) (2006) 195–225.
[49] S. Shapiro, Y. Lespérance, H.J. Levesque, The cognitive agents specification language and verification environment for multiagent systems, in: Proceed-

ings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: part 1, 2002, pp. 19–26.
[50] S. Eker, J. Meseguer, A. Sridharanarayanan, The Maude LTL model checker, Electron. Notes Theor. Comput. Sci. 71 (2004) 162–187.
[51] M.B. Van Riemsdijk, F.S. De Boer, M. Dastani, J.-J.C. Meyer, Prototyping 3APL in the Maude term rewriting language, in: International Workshop on

Computational Logic in Multi-Agent Systems, Springer, 2006, pp. 95–114.
[52] T.T. Doan, Y. Yao, N. Alechina, B. Logan, Verifying heterogeneous multi-agent programs, in: Proceedings of the 2014 International Conference on Au-

tonomous Agents and Multi-Agent Systems, 2014, pp. 149–156.
[53] S.-S.T. Jongmans, K.V. Hindriks, M.B. Van Riemsdijk, Model checking agent programs by using the program interpreter, in: International Workshop on

Computational Logic in Multi-Agent Systems, Springer, 2010, pp. 219–237.
[54] R.H. Bordini, M. Fisher, W. Visser, M. Wooldridge, State-space reduction techniques in agent verification, in: Proceedings of the Third International Joint

Conference on Autonomous Agents and Multiagent Systems-Volume 2, 2004, pp. 896–903.
[55] R.H. Bordini, M. Fisher, M. Wooldridge, W. Visser, Property-based slicing for agent verification, J. Log. Comput. 19 (6) (2009) 1385–1425.
[56] M. Winikoff, L. Dennis, M. Fisher, Slicing agent programs for more efficient verification, in: International Workshop on Engineering Multi-Agent Systems,

Springer, 2018, pp. 139–157.
[57] S.-S.T. Jongmans, K.V. Hindriks, M.B. Van Riemsdijk, State space reduction for model checking agent programs, in: International Workshop on Program-

ming Multi-Agent Systems, Springer, 2011, pp. 133–151.
[58] R. Milner, Pure bigraphs: structure and dynamics, Inf. Comput. 204 (1) (2006) 60–122.
[59] O.H. Jensen, Mobile processes in bigraphs, Ph.D. dissertation, University of Aalborg, 2006.
[60] M. Sevegnani, E. Pereira, Towards a bigraphical encoding of actors, in: Proceedings of International Workshop on Meta Models for Process Languages,

2014.
[61] A. Mansutti, M. Miculan, M. Peressotti, Multi-agent systems design and prototyping with bigraphical reactive systems, in: IFIP International Conference

on Distributed Applications and Interoperable Systems, Springer, 2014, pp. 201–208.
[62] A.T.E. Dib, Z. Sahnoun, Model checking of multi-agent system architectures using BigMC, in: Proceedings of Federated Conference on Computer Science

and Information Systems, 2015, pp. 1717–1722.
[63] B. Archibald, M. Calder, M. Sevegnani, Probabilistic bigraphs, submitted for publication, 2021, preprint at https://arxiv.org /abs /2105 .02559.
[64] A. Bianco, L. De Alfaro, Model checking of probabilistic and nondeterministic systems, in: International Conference on Foundations of Software Tech-

nology and Theoretical Computer Science, Springer, 1995, pp. 499–513.
[65] B. Archibald, M. Calder, M. Sevegnani, M. Xu, Probabilistic BDI agents: actions, plans and intentions, in: Proceedings of 19th Intl. Conference on Software

Engineering and Formal Methods, 2021.
[66] L. De Silva, An operational semantics for true concurrency in BDI agent systems, in: Proceedings of the AAAI Conference on Artificial Intelligence

34 (05) (2020) 7119–7126.
[67] B. Archibald, M. Calder, M. Sevegnani, M. Xu, Observable and attention-directing BDI agents for human-autonomy teaming, in: M. Farrell, M. Luckcuck

(Eds.), Proceedings Third Workshop on Formal Methods for Autonomous Systems, in: Electronic Proceedings in Theoretical Computer Science, vol. 348,
Open Publishing Association, 2021, pp. 167–175.
35

http://refhub.elsevier.com/S0167-6423(21)00153-2/bib8D8161A2FBCF833D9511932EA18F14D0s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib8D8161A2FBCF833D9511932EA18F14D0s1
https://doi.org/10.5281/zenodo.4472541
https://doi.org/10.5281/zenodo.4472541
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibCA0E011A63847DAC5DEFCBB5B79992E9s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib94619E9B0E0B9831B187601BD46196FAs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib6EA4B611C632B2A7942BB67C19D171B3s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib6EA4B611C632B2A7942BB67C19D171B3s1
https://doi.org/10.1016/j.jlap.2004.03.008
https://doi.org/10.1016/j.jlap.2004.03.008
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib030733D82A74AD5EDD85420E5D68A13Cs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib030733D82A74AD5EDD85420E5D68A13Cs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib02EFFD9192E6E19A480CE6D6B901E7F9s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib02EFFD9192E6E19A480CE6D6B901E7F9s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib4C91A4C4A3B8A776AA2D8EF95DB07944s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib4C91A4C4A3B8A776AA2D8EF95DB07944s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibF7C07E23DDFB9DBB6B9409AA1EDBEE2Bs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib995D1A39073DDB536F04C33DD458F5C9s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibC3582DDB27BFCF3C9DF68448C3640632s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib85CAB8673B9B3C46EE6CCDF5DA25FAEAs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib3E10D690DADDAF03176A224A8D442B2Es1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib1878577CF6A5A937D768F30B7A88E792s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib1878577CF6A5A937D768F30B7A88E792s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib010FCB763E1982F1FEC9681D86C1E180s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibE1B54F823B059D96147C5039B438F7B3s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibE1B54F823B059D96147C5039B438F7B3s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib7274785C486D5F751A5F52B2BEEFF5D2s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib7274785C486D5F751A5F52B2BEEFF5D2s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib17111B8932EC089A2888926205ABC7D4s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib17111B8932EC089A2888926205ABC7D4s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib5C5ED317F1D95E5947D7EBE16BBDB3C4s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib5C5ED317F1D95E5947D7EBE16BBDB3C4s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib3F8D4AC4D351EC258E66EFAC428E593Fs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib3F8D4AC4D351EC258E66EFAC428E593Fs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibBF7D58439B443CD189FCBC75E111EBCFs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibE5FB3565CDBAFD6B3E98117A35E50FD5s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibE5FB3565CDBAFD6B3E98117A35E50FD5s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib60E5EA4B8E223684AD8CA9B695D9D2BAs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib60E5EA4B8E223684AD8CA9B695D9D2BAs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib9EE365F015847400867BD037ED4103E4s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib9EE365F015847400867BD037ED4103E4s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibD530E590C39F05C8E352F668DDB572AAs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibD530E590C39F05C8E352F668DDB572AAs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibE14761F50C61E845CF6D7C648682F456s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib911C764800F833081F222356E0839A82s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib911C764800F833081F222356E0839A82s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib524CF9C99C38E0E1D700D7F4EA76B3CDs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib524CF9C99C38E0E1D700D7F4EA76B3CDs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib64CF31737581DE4B6118A8D5D5397A94s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib8757904EC2B64A31461936B37079AACBs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib2701080F1394314163E64D471C628BD7s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib2701080F1394314163E64D471C628BD7s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib5FC92179032CEB81976C397A8B87ECE0s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib5FC92179032CEB81976C397A8B87ECE0s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibD8CB866B0DDA81D66903C923F09798BAs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibD8CB866B0DDA81D66903C923F09798BAs1
https://arxiv.org/abs/2105.02559
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib1472955B085BB55D538A8A1329D3653Fs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib1472955B085BB55D538A8A1329D3653Fs1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib8CEC38927E362971E90AABF4AF43449Es1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bib8CEC38927E362971E90AABF4AF43449Es1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibA86C8DB24DC0C1A4FC69EDC8C302C735s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibA86C8DB24DC0C1A4FC69EDC8C302C735s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibA506D413CFCB0855454329B638B28133s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibA506D413CFCB0855454329B638B28133s1
http://refhub.elsevier.com/S0167-6423(21)00153-2/bibA506D413CFCB0855454329B638B28133s1

	Modelling and verifying BDI agents with bigraphs
	1 Introduction
	2 Preliminaries
	2.1 BDI agents
	2.1.1 Running example -- conference travel agent

	2.2 Bigraphs
	2.3 Bigraphical reactive systems

	3 Encoding BDI agents in bigraphs
	3.1 Encoding of beliefs, desires, and intentions
	3.2 Encoding plans and plan-bodies
	3.3 Example of encoding

	4 Semantics of core CAN language
	4.1 Overview of core Can language
	4.2 Core Can semantics
	4.3 Example of core Can semantics
	4.4 AND/OR trees

	5 Encoding core CAN semantics in bigraphs
	5.1 Belief checks and updates
	5.2 Modelling reductions
	5.3 Core semantic encoding
	5.3.1 Actions
	5.3.2 Plan selection
	5.3.3 Tree reductions
	5.3.4 Failure recovery
	5.3.5 Agent steps

	5.4 Correctness
	5.5 Reduction example

	6 Extended features
	6.1 Concurrency
	6.2 Declarative goals

	7 UAVs examples
	7.1 Persistent patrol
	7.2 Concurrent sensing in one intention
	7.3 Concurrent sensing in two intentions
	7.4 Contingency handling for a retrieve task
	7.5 Properties
	7.5.1 Bigraph patterns
	7.5.2 Example properties

	7.6 Results

	8 Reflections
	8.1 Modularity in semantics of Can
	8.2 Inconsistency of semantics in Can literature
	8.3 Redundant event names
	8.4 No difference between intention success and failure
	8.5 Oracle for failure
	8.6 Absence of meta-level reasoning
	8.7 Concurrency within vs. among intentions
	8.8 Experience on theoretical and practical bigraph encoding approach

	9 Related work
	10 Future work
	11 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

