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Belief-Desire-Intention (BDI) agents feature uncertain beliefs (e.g. sensor noise), probabilistic 
action outcomes (e.g. attempting and action and failing), and non-deterministic choices (e.g. what 
plan to execute next). To be safely applied in real-world scenarios we need reason about such 
agents, for example, we need probabilities of mission success and the strategies used to maximise 
this. Most agents do not currently consider uncertain beliefs, instead a belief either holds or 
does not. We show how to use epistemic states to model uncertain beliefs, and define a Markov 
Decision Process for the semantics of the Conceptual Agent Notation (Can) agent language 
allowing support for uncertain beliefs, non-deterministic event, plan, and intention selection, 
and probabilistic action outcomes. The model is executable using an automated tool—CAN-

verify—that supports error checking, agent simulation, and exhaustive exploration via an 
encoding to Bigraphs that produces transition systems for probabilistic model checkers such as 
PRISM. These model checkers allow reasoning over quantitative properties and strategy synthesis. 
Using the example of an autonomous submarine and drone surveillance together with scalability 
experiments, we demonstrate our approach supports uncertain belief modelling, quantitative 
model checking, and strategy synthesis in practice.

1. Introduction

The Belief-Desire-Intention (BDI) [1] architecture is a popular and well-studied rational agent framework and forms the basis 
of, among others, AgentSpeak [2], An Abstract Agents Programming Language (3APL) [3], A Practical Agent Programming Lan-

guage (2APL) [4], Jason [5], and Conceptual Agent Notation (Can) [6]. In a BDI agent, the (B)eliefs represent what the agent knows, 
the (D)esires what the agent wants to bring about, and the (I)ntentions those desires the agent has chosen to act upon.

In BDI languages, desires and intentions are represented implicitly by defining a plan library where the plans are written by 
programmers in a modular fashion. Plans describe how, and under what conditions (based on beliefs), an agent can react to an event 
(a desire). The set of intentions are those plans that are currently being executed. A desirable feature of agent-based systems is that 
they are reactive [7]: an agent can respond to new events even while already dealing with existing events. To allow this, agents 
pursue multiple events and execute intentions in an interleaved manner. This requires a decision-making process: which event to 
handle first (event selection) and which intention to progress next (intention selection). When handling events, we must also decide 
which plan to select from a set of possible plans (plan selection).
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The deployment of BDI-based systems raises concerns of trustworthiness. In practice, the beliefs of an agent are uncertain, for 
example due to sensor noise, incomplete information, or generation by a probabilistic algorithm, e.g. machine learning. In a multi-

agent environment, new information from other agents may not cancel out existing beliefs but instead strengthen or weaken them. 
Erroneous plans can cause incorrect behaviour. Even with a correct plan library, careless decisions for interleaving intention progression 
can result in failures/conflicts, e.g. the progressing one intention can make it impossible to progress another (deadlock). This negative 
tension between modularised plan design and interleaved execution is difficult to identify using traditional non-exhaustive testing 
approaches as there is no guarantee we see all interleavings. Action outcomes are inherently probabilistic due to imprecise actuation. As 
a result, there is a growing need for formal techniques that can handle quantitative properties of agent-based systems, in particular, 
under uncertainty [8]. Given the number of non-deterministic decisions faced by an agent, we may want to synthesise a strategy to 
determine ahead-of-time the decisions an agent should make, e.g. to avoid the worst-case execution.

To illustrate the challenges, we use a robotic submarine example. The goal of the robotic submarine is to inspect a pipeline located 
on a seabed. The robotic submarine has the (non-deterministic) choice to operate at different depths: low, medium, or high. Low 
depths allow a wider field of vision (and so faster mission completion). But, at low depths (far away from the seabed), the accuracy of 
the vision algorithm decreases resulting in uncertain beliefs. Higher depths increase vision accuracy but also increase the probability of 
thruster failure, e.g. due to seaweed wrapping around the thrusters. It is important to compare the trade-offs between vision accuracy 
and thruster failure, and in general we need to model and quantify agent behaviour when there are a range of non-deterministic 
choices, uncertain beliefs, and probabilistic action outcomes. For example, we may want to guarantee the submarine completes the 
mission with a probability above a threshold.

Verifying BDI agent behaviours through model checking and theorem proving has been well explored. For example, using the 
Java PathFinder model-checker [9] and the Isabelle/HOL proof assistant [10]. Unfortunately, they do not adequately represent agent 
behaviours in cyber-physical robotics systems (e.g. surveyed in [11]), e.g. supporting modelling imprecise actuators. To reason with 
the quantitative behaviours of BDI agents, the authors of [12] investigate the probabilistic semantics and resulting verification of 
BDI agents with imprecise actuators by resolving non-determinism in various selections through manually specified strategies (fixed 
orders, round-robin fashion, or probabilistic distribution). However, these hand-crafted strategies may not be optimal. Determining 
effective strategies is complex and often requires advanced planning algorithms [13,14].

We show how to enable quantitative verification and strategy synthesis [15,16] for BDI agents. This allows us to determine 
the probability an agent successfully completes a mission under uncertain beliefs (and probabilistic actions), and derive a suitable 
strategy for resolving the non-deterministic choices in intention/event/plan selection that maximises success. We focus on the Can

language [17,18], a high-level agent programming language that captures the essence of BDI concepts without describing implemen-

tation details. As a superset of most well-known AgentSpeak [2], Can includes advanced BDI agent behaviours such as reasoning 
with declarative goals and failure recovery. Although we focus on Can, the language features are similar to those of other mainstream 
BDI languages and the same modelling and verification techniques would apply to other BDI programming languages.

We build on an executable non-deterministic and probabilistic semantics of Can [12], based on Milner’s Bigraphs [19]. Specifically, 
we use action bigraphs [20] to model plan/intention selection as non-deterministic choices and assign probabilities to system transi-

tions (graph rewrites). This provides a model of Can based on a Markov decision process (MDP) [21] that we denote as Can𝑚. The 
MDP formalisation of agent behaviours enables us to model certain unknown aspects of a system’s behaviour, e.g. the scheduling 
between intentions executing in parallel and represent uncertainty arising from, for example, action execution. However, it omits 
the important part of uncertainty arising in the agent’s beliefs. To address this shortcoming, we present in this paper an extension of 
Can𝑚, denoted as Can𝑚

+ , where the uncertain beliefs of an agent are modelled by epistemic states as described in [22,23]. Epistemic 
states represent the degree of certainty in the agent’s beliefs. For analysis we use BigraphER [24]—a framework for manipulating 
bigraphs—that executes a rewrite system over a given initial state (initial agent program setup). The set of all states and transitions 
from BigraphER is the underlying MDP which can be analysed using existing probabilistic model checkers, e.g. PRISM [25]. Model 
checkers allow checking of probabilistic/reward-based properties based on (probabilistic) temporal logics, and can perform strategy 
synthesis (to determine which actions to take in the face of non-determinism).

To widen the access of our modelling and verification techniques, we provide an automated tool, CAN-verify, that automates 
the translation from agent specification to bigraphs. CAN-verify can also provide (probabilistic) verification against both generic 
agent requirements, such as determining the probability a task is successful, and user-defined requirements, such as determining the 
probability a certain belief is true at some point in the future. This is done by automatically calling PRISM on the MDP generated by 
BigraphER.

Parts of this study and preliminary results were presented in [26]. We make the following additional research contributions:

• We extend the operational semantics of the CAN language [22,23] to support uncertain beliefs by utilising epistemic states [22]. 
We call this new language Can+;

• Via a translation to (action) bigraphs, we provide an executable model of Can+ that we call Can𝑚
+ . Using BigraphER, we can 

construct the underlying MDP (that defines which actions are allowed in which states) and this can be passed to PRISM for 
quantitative verification and strategy synthesis;

• We give an extended version of the CAN-verify tool [27] that supports agents with uncertain beliefs;

• We show how these new semantics support quantitative analysis using a robotic submarine example and scalability experiments 
2

in a drone example;
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The paper is organised as follows: Section 2 introduces BDI agents, the Can language, and MDPs; in Section 3, we show how 
epistemic states can be used to model uncertain beliefs and give an extended semantics for Can, i.e. Can+; in Section 4, we show how 
Can+ can be formalised as an MDP. In Section 5, we show how to encode the MDP model in Bigraphs and how to perform probabilistic 
verification and strategy synthesis for a robotic submarine. We also present our extension of CAN-verify for probabilistic verification 
of agents’ properties. In Section 7, we reflect on our choices of epistemic states to model uncertain beliefs and bigraphs as an encoding 
language. Section 8 discusses related work, Section 9 gives plans of for future extensions, and we conclude in Section 10.

2. Preliminaries

We give an overview of BDI agents using the Conceptual Agent Notation (Can) language, and Markov Decision Processes (MDPs).

2.1. BDI agents

A BDI agent has an explicit representation of beliefs, desires, and intentions. The beliefs correspond to what the agent believes 
about the environment, while the desires are a set of external events that the agent can respond to. To respond to those events, the 
agent selects an appropriate plan (given its beliefs) from the pre-defined plan library and commits to the selected plan by turning it 
into a new intention.

2.1.1. Syntax

Can is a superset of AgentSpeak [2] featuring the same core operational semantics, along with several additional appealing 
features: declarative goals, concurrency, and failure handling.

A Can agent consists of a belief base  and a plan library Π. The belief base  encodes the current beliefs (usually as atoms, or 
first order predicates) and has operators to check whether a belief formula 𝜑 follows from the belief base (i.e.  ⊧ 𝜑), and to revise 
the belief base. The standard way to perform for belief revision is to add a belief atom 𝑏 to a belief base  (i.e.  ∪{𝑏}), and to delete 
a belief atom from a belief base (i.e.  ⧵ {𝑏}).

A plan library Π contains the operational procedures of an agent and is a finite collection of plans of the form 𝑃 𝑙 = 𝑒 ∶ 𝜑 ← 𝑃 with 
𝑃 𝑙 the plan identifier, 𝑒 the triggering event, 𝜑 the context condition, and 𝑃 the plan-body. The triggering event 𝑒 specifies why the 
plan is triggered, the context condition 𝜑 determines when the plan-body 𝑃 is able to handle the event. For convenience, we call the 
set of events from the external environment the external event set, denoted 𝐸𝑒 . Finally, the remaining events (which occur as a part 
of the plan-body) are either sub-events or internal events.

By convention (e.g. in [5]), the set of plan-bodies 𝑃 in a plan 𝑃 𝑙 = 𝑒 ∶ 𝜑 ← 𝑃 may be referred to as the program or agent program

and has the following syntax:

𝑃 ∶∶= act | ?𝜑 | + b | − b | 𝑒 | P1;P2 | P1 ∥ P2 | goal(𝜑𝑠,P, 𝜑𝑓 )

with 𝑎𝑐𝑡 an action, ?𝜑 a test for 𝜑 entailment in the belief base, +𝑏 and −𝑏 represent belief addition and deletion, and 𝑒 is a sub-

event (i.e. internal event). To execute a sub-event, a plan (corresponding to that event) is selected and the plan-body added in place 
of the event. In this way we allow plans to be nested (similar to sub-routine calls in other languages). Actions 𝑎𝑐𝑡 take the form 
𝑎𝑐𝑡 = 𝜓 ← ⟨𝜙+, 𝜙−⟩, where 𝜓 is the pre-condition, and 𝜙+ and 𝜙− are the addition and deletion sets (resp.) of belief atoms, i.e. a 
belief base  is revised with addition and deletion sets 𝜙+ and 𝜙− to be ( ⧵𝜙−) ∪𝜙+ when the action executes. In addition, there are 
composite programs P1; P2 for sequence and P1 ∥ P2 for interleaved concurrency. Finally, a declarative goal program goal(𝜑𝑠, P, 𝜑𝑓 )
expresses that the declarative goal 𝜑𝑠 should be achieved through program 𝑃 , failing if 𝜑𝑓 becomes true, and retrying as long as 
neither 𝜑𝑠 nor 𝜑𝑓 is true (see in [18] for details). Additionally, there are auxiliary program forms that are used internally when 
assigning semantics to programs, namely 𝑛𝑖𝑙, the empty program, and P1 ⊳ P2 that executes P2 if the case that P1 fails. When a 
plan 𝑃 𝑙 = 𝑒 ∶ 𝜑 ← 𝑃 is selected to respond to an event, its plan-body 𝑃 is adopted as an intention in the intention base Γ (a.k.a. the 
partially executed plan-body). Finally, we assume a plan library does not have recursive plans (thus avoiding potential infinite state 
space).

2.1.2. Semantics

Can semantics is specified by two types of transitions. The first, denoted →, specifies intention-level evolution on configurations 
⟨, 𝑃 ⟩ where  is the belief base, and 𝑃 the plan-body currently being executed. The second type, denoted ⇒, specifies agent-level

evolution over ⟨𝐸𝑒, , Γ⟩, detailing how to execute a complete agent where 𝐸𝑒 is the set of pending external events to address (a.k.a. 
desires),  the belief base, and Γ a set of partially executed plan-bodies (intentions).

Fig. 1 summarises rules for evolving any single intention. For example, the rule 𝑎𝑐𝑡 handles the execution of an action, when the 
pre-condition 𝜓 is met, resulting in a belief state update. Rule 𝑒𝑣𝑒𝑛𝑡 replaces an event with the set of relevant plans, while rule 𝑠𝑒𝑙𝑒𝑐𝑡
chooses an applicable plan from a set of relevant plans while retaining un-selected plans as backups. With these backup plans, the 
rules for failure recovery ⊳;, ⊳⊤, and ⊳⊥ enable new plans to be selected if the current plan fails (e.g. due to environment changes). 
Rules ; and ;⊤ allow executing plan-bodies in sequence, while rules ‖1 , ‖2, and ‖⊤ specify how to execute (interleaved) concurrent 
programs. Rules 𝐺𝑠 and 𝐺𝑓 deal with declarative goals when either the success condition 𝜑𝑠 or the failure condition 𝜑𝑓 become true. 
Rule 𝐺𝑖𝑛𝑖𝑡 initialises persistence by setting the program in the declarative goal to be 𝑃 ⊳ 𝑃 , i.e. if 𝑃 fails try 𝑃 again, and rule 𝐺;
takes care of performing a single step on an already initialised program. Finally, the derivation rule 𝐺⊳ re-starts the original program 
3

if the current program has finished or got blocked (when neither 𝜑𝑠 nor 𝜑𝑓 is true).
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𝑎𝑐𝑡 ∶ 𝜓 ← ⟨𝜙−, 𝜙+⟩  ⊨ 𝜓

⟨, 𝑎𝑐𝑡⟩→ ⟨( ⧵ 𝜙− ∪𝜙+), 𝑛𝑖𝑙⟩ 𝑎𝑐𝑡
Δ= {𝜑 ∶ 𝑃 ∣ (𝑒′ = 𝜑← 𝑃 ) ∈ Π ∧ 𝑒′ = 𝑒}

⟨, 𝑒⟩→ ⟨, 𝑒 ∶ (∣ Δ ∣)⟩ 𝑒𝑣𝑒𝑛𝑡
𝜑 ∶ 𝑃 ∈Δ  ⊧ 𝜑

⟨, 𝑒 ∶ (∣ Δ ∣)⟩→ ⟨, 𝑃 ⊳ 𝑒 ∶ (∣ Δ ⧵ {𝜑 ∶ 𝑃 } ∣)⟩ 𝑠𝑒𝑙𝑒𝑐𝑡

⟨, 𝑃1⟩→ ⟨′, 𝑃 ′
1⟩

⟨, 𝑃1 ⊳ 𝑃2⟩→ ⟨′, 𝑃 ′
1 ⊳ 𝑃2)⟩

⊳; ⟨, (𝑛𝑖𝑙 ⊳ 𝑃2)⟩→ ⟨′, 𝑛𝑖𝑙⟩⊳⊤

𝑃1 ≠ 𝑛𝑖𝑙 ⟨, 𝑃1⟩↛ ⟨, 𝑃2⟩→ ⟨′, 𝑃 ′
2⟩

⟨, 𝑃1 ⊳ 𝑃2⟩→ ⟨′ , 𝑃 ′
2⟩

⊳⊥

⟨, 𝑃 ⟩→ ⟨′ , 𝑃 ′⟩
⟨, (𝑛𝑖𝑙;𝑃 )⟩→ ⟨′, 𝑃 ′⟩ ;⊤

⟨, 𝑃1⟩→ ⟨′, 𝑃 ′
1⟩

⟨, (𝑃1;𝑃2)⟩→ ⟨′, (𝑃 ′
1 ;𝑃2)⟩

;
⟨, 𝑃1⟩→ ⟨′, 𝑃 ′

1⟩
⟨, (𝑃1‖𝑃2)⟩→ ⟨′, (𝑃 ′

1‖𝑃2)⟩
‖1

⟨, 𝑃2⟩→ ⟨′, 𝑃 ′
2⟩

⟨, (𝑃1‖𝑃2)⟩→ ⟨′, (𝑃1‖𝑃 ′
2 )⟩

‖2 ⟨, (𝑛𝑖𝑙‖𝑛𝑖𝑙)⟩→ ⟨, 𝑛𝑖𝑙⟩ ‖⊤

 ⊧ 𝜑𝑠

⟨,goal(𝜑𝑠,P, 𝜑𝑓 )⟩→ ⟨, 𝑛𝑖𝑙⟩𝐺𝑠

 ⊧ 𝜑𝑓

⟨,goal(𝜑𝑠,P, 𝜑𝑓 )⟩→ ⟨, ?false⟩𝐺𝑓

𝑃 ≠ 𝑃1 ⊳ 𝑃2 ⊭𝜑𝑠 ⊭𝜑𝑓

⟨,goal(𝜑𝑠,P, 𝜑𝑓 )⟩→ ⟨,goal(𝜑𝑠,P ⊳ 𝑃 ,𝜑𝑓 )⟩𝐺𝑖𝑛𝑖𝑡

⊭𝜑𝑠 ⊭𝜑𝑓 ⟨, 𝑃1⟩→ ⟨′, 𝑃 ′
1⟩

⟨,goal(𝜑𝑠,𝑃1 ⊳ 𝑃2, 𝜑𝑓 )⟩→ ⟨′ ,goal(𝜑𝑠,𝑃
′
1 ⊳ 𝑃2, 𝜑𝑓 )⟩

𝐺;
⊭𝜑𝑠 ⊭𝜑𝑓 ⟨, 𝑃1⟩↛

⟨,goal(𝜑𝑠,𝑃1 ⊳ 𝑃2, 𝜑𝑓 )⟩→ ⟨,goal(𝜑𝑠,𝑃2 ⊳ 𝑃2, 𝜑𝑓 )⟩𝐺⊳

Fig. 1. Intention-level Can semantics.

𝑒 ∈𝐸𝑒

⟨𝐸𝑒,,Γ⟩⇒ ⟨𝐸𝑒 ⧵ {𝑒},,Γ ∪ {𝑒}⟩𝐴𝑒𝑣𝑒𝑛𝑡

𝑃 ∈ Γ ⟨, 𝑃 ⟩→ ⟨′, 𝑃 ′⟩
⟨𝐸𝑒,,Γ⟩⇒ ⟨𝐸𝑒,′, (Γ ⧵ {𝑃 }) ∪ {𝑃 ′}⟩𝐴𝑠𝑡𝑒𝑝

𝑃 ∈ Γ ⟨, 𝑃 ⟩↛
⟨𝐸𝑒,,Γ⟩⇒ ⟨𝐸𝑒,,Γ ⧵ {𝑃 }⟩𝐴𝑢𝑝𝑑𝑎𝑡𝑒

Fig. 2. Agent-level Can semantics.

The agent-level semantics are given in Fig. 2. The rule 𝐴𝑒𝑣𝑒𝑛𝑡 handles external events by adopting them as intentions. Rule 𝐴𝑠𝑡𝑒𝑝

selects an intention from the intention base, and evolves a single step w.r.t. the intention-level transition, while 𝐴𝑢𝑝𝑑𝑎𝑡𝑒 discards any 
unprogressable intentions (either already succeeded, or failed).

2.2. Markov decision processes

Markov decision processes (MDPs) are a widely used formalism for modelling systems that exhibit both probabilistic actions and 
nondeterministic choices. An MDP [21] is a tuple  = (𝑆, ̄𝑠, 𝛼, 𝛿) where 𝑆 is a set of states, �̄� an initial state, 𝛼 a set of actions (atomic 
labels), and 𝛿 ∶ 𝑆 × 𝛼 →𝐷𝑖𝑠𝑡(𝑆) a (partial) probabilistic transition function where 𝐷𝑖𝑠𝑡(𝑆) is the set of the probability distribution 
over states 𝑆 . Each state 𝑠 of an MDP  has a (possibly empty) set of enabled actions 𝐴(𝑠) 

def
= {𝑎 ∈ 𝛼 ∣ 𝛿(𝑠, 𝑎) is defined}. When action 

𝑎 ∈𝐴(𝑠) is taken in state 𝑠, the next state is determined probabilistically according to the distribution 𝛿(𝑠, 𝑎), i.e. the probability that 
a transition to state 𝑠′ occurs is 𝛿(𝑠, 𝑎)(𝑠′). An MDP may have an action reward structure i.e. a function of the form 𝑅 ∶ 𝑆 × 𝛼 →ℝ≥0
that increments a counter when an action is taken. An adversary (also known as a strategy or policy) resolves non-determinism by 
determining a single action choice per state, and optimal adversaries are those that e.g. minimise the probability some property holds. 
This can be used to ensure, for example, the chance of system failure events is minimised.

3. Epistemic beliefs in BDI agents

Traditionally, the belief base of a BDI agent is a set of belief atoms that are believed either true or false by an agent. However, in 
a realistic setting the beliefs of an agent are uncertain. This might be because of technical imprecision, such as sensor noise, or where 
the information is coming from e.g. if it was produced by a machine learning algorithm. Likewise, when gathering information from 
other agents, to avoid security issues, information should not be treated as fact, but only as evidence towards some belief atom. Given 
this, a binary model for belief atoms is too weak in practice, and instead, we need a belief model with a level of confidence in certain 
belief atoms.

To allow degrees of belief, we use results from the field of belief revision. In particular, the idea of an epistemic state applied to 
agents. Epistemic states allow us to associate a plausibility to a particular set of belief atoms. A full description of epistemic states is 
in [22,23], and we reuse these notations, which are publicly available, as the preparation to our modelling later on.

For epistemic states, degrees of a set of beliefs (likelihoods) are measured numerically i.e. as a function 𝜔 mapping a set of beliefs 
to ℤ ∪ {−∞, +∞}, where integers closer to +∞ imply more confidence in the set of beliefs, i.e. +∞ means full confidence, and 
likewise for less confidence as we tend towards −∞.

3.1. Modelling uncertain beliefs

We start from a finite set of belief atoms 𝑡, and 𝐿𝑖𝑡 = {𝑎 ∣ 𝑎 ∈ 𝑡} ∪ {¬𝑎 ∣ 𝑎 ∈ 𝑡} be the set of literals (truth assignments) 
constructed from 𝑡. For a literal 𝑙 ∈ 𝐿𝑖𝑡, we use 𝑙∗ to denote the underlying atom such that 𝑙∗ = 𝑎 when 𝑙 = 𝑎 or 𝑙 = ¬𝑎. The main 
idea is, instead of assigning a plausibility to a set of belief atoms, we track for each belief atom evidence for and against that belief 
atom being true. If required, we can recover the plausibility of the entire belief base through a linear combination1 of the plausibility 
of each belief atom.

Epistemic states use ±∞ to denote absolute confidence/distrust in a particular atom, i.e. truth and falsehood. In practice we do 
not want atoms to be considered absolutely true, so we exclude the possibility of ±∞ in our model.2

1 We assume that belief atoms are independent so one belief holding does not affect the likelihood of another holding.
4

2 This could be re-added if absolute truth was required, with careful consideration on for belief revision as + is not defined over ±∞.
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Definition 1. Let 𝑡 be a finite set of belief atoms. A compact epistemic state  is a mapping  ∶ 𝑡 ↦ (ℤ, ℤ). We denote the 
mapping of a single atom 𝑎 as (𝑎) = (𝜇+, 𝜇−) where 𝜇+ is evidence for the atom being true and 𝜇− evidence for the atom being 
false.

Definition 2. For a compact epistemic state  and atom 𝑎 ∈𝑡, the likelihood belief 𝑎 is true in this state (i.e. 𝑎, not ¬𝑎) is denoted 
as  ⊧ 𝑎 and holds when (𝑎) = (𝜇+, 𝜇−) and 𝜇+ −𝜇− > 0. That is, there is more evidence it holds than it does not. When 𝜇+ −𝜇− < 0
then  ⊧ ¬𝑎. For 𝜇+ − 𝜇− = 0 we do not have any clear evidence so do not hold either belief.

Throughout an agents lifetime, we need to revise the beliefs based on new information/evidence (e.g. through sensors) as follows:

Definition 3. A new piece of information concerning a belief literal 𝑙 ∈𝐿𝑖𝑡 for atom 𝑎 with degree of belief 𝑚 is a compact epistemic 
state 𝑛𝑒𝑤 such that

• new(𝑎) = (𝑚, 0) if 𝑙 = 𝑎

• new(𝑎) = (0, 𝑚) if 𝑙 = ¬𝑎

For convenience, we denote the new compact epistemic state for a literal 𝑙 and degree of belief as (𝑙, 𝑚), e.g. (𝑎, 2) etc.

Finally, we define the revision of a compact epistemic state  by another epistemic state  ′, denoted as ◦ ′.

Definition 4. For two compact epistemic states  ,  ′ where (𝑎) = (𝜇+, 𝜇−) and  ′(𝑎) = (𝜇′
+, 𝜇

′
−), the revised (combined) epistemic 

state  ′′ =◦ ′ such that (for all atoms)  ′′(𝑎) = (𝜇+ +𝜇′
+, 𝜇− +𝜇′

−). Notice that the commutativity of + means it does not matter 
which order we apply revisions in.

For an input compact epistemic state (𝑙, 𝑚) (which is usually what we revise over), we denote  ′ =◦(𝑙, 𝑚) where

(𝑎) =
⎧
⎪⎨⎪⎩

(𝜇+ +𝑚,𝜇−) if 𝑙 = 𝑎

(𝜇+, 𝜇− +𝑚) if 𝑙 = ¬𝑎
(𝑎) otherwise

Example 1. Let 𝑡 be {𝑎, 𝑏, 𝑐} with an initial compact epistemic state (𝑎) =(𝑏) =(𝑐) = (0, 0). Applying a sequence of compact 
epistemic inputs (¬𝑐, 2), (𝑎, 4), (𝑏, −3), (¬𝑎, 3), we obtain a new epistemic state  ′ where  ′(𝑎) = (4, 3),  ′(𝑏) = (−3, 0), and  ′(𝑐) =
(0, 2).  ′ ⊧ 𝑎 as  ′ = (4, 3) and 𝜇+ − 𝜇− = 4 − 3 > 0.

3.2. Semantics for epistemic beliefs in Can

BDI agents are already structured to allow any logic that allows belief updates and an entailment operator. We utilise this to use 
the compact epistemic state  to take the role of a belief base  in Can, giving us the updated semantics Can+. From now on, we 
will focus on Can+ (that supports uncertainty beliefs) to avoid confusion. Only minor updates are required in belief entailment and 
belief revision rules. For example, the new semantics for action execution allows weighted belief updates in the original Can:

𝑎𝑐𝑡 ∶ 𝜓 ← (𝑙,𝑚)  ⊨ 𝜓

⟨ , 𝑎𝑐𝑡⟩→ ⟨◦(𝑙,𝑚), 𝑛𝑖𝑙⟩ 𝑎𝑐𝑡

This states the effect of an action is an input compact epistemic state (𝑙, 𝑚) in 𝑎𝑐𝑡 ∶ 𝜓 ← (𝑙, 𝑚). The intention-level configuration of

Can changes from ⟨, 𝑎𝑐𝑡⟩ to ⟨ , 𝑎𝑐𝑡⟩ to show we are using epistemic beliefs. Finally, the effect of an action revises the compact 
epistemic state  with the input compact epistemic state (𝑙, 𝑚), i.e. ◦(𝑙, 𝑚). The rest of semantics rules can be similarly adjusted. 
Before we close this section, we also notice that the action execution in the original Can is non-probabilistic (so is the case with 
Can+) and we will extend it to probabilistic actions in the next section.

4. An MDP model of CAN+ semantics

MDPs model systems with nondeterministic and probabilistic behaviour. To use an MDP with the Can+, we associate Can+ rules 
with MDP actions and Can+ states to MDP states. We refer to the MDP model of Can+ as Can𝑚

+ .

States in Can𝑚
+ are given by the agent-level configuration ⟨𝐸𝑒,  , Γ⟩ of Can+. The state space is 𝑆 ⊆ 2𝐸𝑒 ×2 ×2Γ where the exact 

subset of states is determined by the specific program we are modelling and we abuse the notation 2 to stand for all possible instances 
of compact epistemic states.3 An initial state of a Can𝑚

+ is �̄� = ⟨𝐸𝑒
0 , 0, Γ0⟩. For example, it can have the form 𝐸𝑒

0 = {𝑒1, ⋯ , 𝑒𝑗} (a set 
of tasks), 0 such that (𝑏𝑖) = (0, 0) (an initial set of beliefs, e.g. about the environment), Γ0 = ∅ (no intentions yet), and 𝑖, 𝑗 ∈ℕ+.

The original Can semantics are defined using operational semantics with transitions over configurations  → ′ (so is Can+) that 
denote a single execution step between configuration  and ′ (see Section 2.1.2). As we reason with probabilistic action outcomes 
5

3 We determine this by symbolically executing the program as we convert to an MDP, and in practice we consider a finite subset of 2 .
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Fig. 3. Left: Can+ semantic rule possibilities highlighting event, intention, plan, and concurrency selection, probabilistic agent action outcomes, and uncertain beliefs. 
Solid lines are agent-level transitions and dashed lines are intention-level. Right: Corresponding MDP model of Can+ semantic rules with empty circles as states and 
solid circles as MDP actions.

of agents, we instead use probabilistic transitions  →𝑝 
′, i.e. this transition happens with probability 𝑝 [28]. For example, most 

(deterministic) Can+ semantics rules can, by default, be modified to be probabilistic rules with a probability 1. And the non-trivial 
use of probabilities primarily focuses on uncertain action outcomes of the agents (which will be introduced shortly in Section 4.1).

To translate a (probabilistic) semantic rule named 𝑟𝑢𝑙𝑒 (Eq. (1)) to an MDP action, we include an MDP action 𝑎𝑟𝑢𝑙𝑒 in the set of 
all MDP action labels and define the transition function 𝛿 such that Eqs. (2) and (3) hold:

𝜆1 𝜆2 ⋯ 𝜆𝑛

 →𝑝 
′ 𝑟𝑢𝑙𝑒 (1)

𝛿(, 𝑎𝑟𝑢𝑙𝑒) is defined iff 𝜆𝑖 holds in  with 𝑖 ∈ {1,2,⋯ , 𝑛} (2)

𝛿(, 𝑎𝑟𝑢𝑙𝑒)(′) = 𝑝 (3)

Condition (2) says a transition of Can𝑚
+ is only enabled if the transition would be enabled in Can+, i.e. the premises 𝜆𝑖 of 𝑟𝑢𝑙𝑒 are 

all met. Condition (3) defines the probability of transitioning from  to ′ in Can𝑚 as the same as the probability of transitioning in 
Can𝑚

+ . The mapping of semantic rules to MDP actions is applied to both intention and agent-level rules from Can.

The overview of our translation from Can+ to an MDP is depicted in Fig. 3. Can+ features non-deterministic transition, e.g. for plan 
selection and choices appear throughout both the agent and intention level transitions. Furthermore, agent actions have probabilistic 
outcomes sampled from a distribution and uncertain beliefs. The right-hand of Fig. 3 presents our MDP model of Can+ with translated 
MDP actions for each semantic rules. We detail this translation in the next sections.

4.1. Probabilistic action outcomes

Probabilistic transitions occur when we add support for probabilistic action outcomes for agents. In original Can, the outcomes 
of an action are fixed outcomes when an agent action is executed. However, in practice agent actions often fail, e.g. there is a chance 
an agent tries to open a door but cannot. To capture these uncertain outcomes in agent actions in epistemic setting, we introduce a 
new probabilistic semantic rule 𝑎𝑐𝑡𝑝 where 𝜇 = [(𝑙1, 𝑚1) ↦ 𝑝1, … , (𝑙𝑛, 𝑚𝑛) ↦ 𝑝𝑛] is a user-specified outcome distribution where (𝑙𝑖, 𝑚𝑖)
denotes an input of a compact epistemic state defined in Definition 1, 𝜇((𝑙𝑖, 𝑚𝑖)) = 𝑝𝑖 and 

∑𝑛

𝑖=1 𝑝𝑖 = 1.

𝑎𝑐𝑡 ∶ 𝜓 ← 𝜇 𝜇((𝑙𝑖,𝑚𝑖)) = 𝑝𝑖  ⊨ 𝜓

⟨ , 𝑎𝑐𝑡⟩→𝑝𝑖
⟨◦(𝑙𝑖,𝑚𝑖), 𝑛𝑖𝑙⟩ 𝑎𝑐𝑡𝑝

For mapping intention-level Can+ configurations to MDP states we use the fact that ⟨ , 𝑃 ⟩ is a special case of ⟨𝐸𝑒,  , Γ⟩ where 
 is a compact epistemic state and 𝑃 ∈ Γ allowing us to translate the intention-level semantic rules to MDP actions according to the 
rule translation template in Eqs. (2) and (3). The probabilistic nature of 𝑎𝑐𝑡𝑝 is reflected in the MDP action 𝑎𝑎𝑐𝑡𝑝 :

𝛿(, 𝑎𝑎𝑐𝑡𝑝 )(
′) = 𝑝𝑖 s.t.  = ⟨ , 𝑎𝑐𝑡⟩, 𝑎𝑐𝑡 ∶ 𝜓 ← 𝜇, ⊨ 𝜓,

𝜇((𝑙𝑖,𝑚𝑖)) = 𝑝𝑖, and ′ = ⟨◦(𝑙𝑖,𝑚𝑖), 𝑛𝑖𝑙⟩

4.2. Intention-level semantics

The intention-level semantics (Fig. 1) specify how to evolve any single intention. Most rules have deterministic outcomes with 
the exception of some rules such as 𝑠𝑒𝑙𝑒𝑐𝑡 (Fig. 1) which is non-deterministic, i.e. when we select a single applicable plan from the 
6

set of relevant plans. To use rules like this in Can𝑚
+ we need to lift the non-determinism, hidden within the rules, to non-determinism 
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between rules. We do this by introducing a new rule for each possible choice, e.g. a rule for each possible plan that can be selected. 
As notation, we describe this set of rules via parameterised rules, e.g. 𝑠𝑒𝑙𝑒𝑐𝑡(𝑛) as follows:

⟨𝑛,𝜑 ∶ 𝑃 ⟩ ∈Δ  ⊧ 𝜑

⟨ , 𝑒 ∶ (∣ Δ ∣)⟩→1 ⟨ , 𝑃 ⊳ 𝑒 ∶ (∣ Δ ⧵ {⟨𝑛,𝜑 ∶ 𝑃 ⟩} ∣)⟩ 𝑠𝑒𝑙𝑒𝑐𝑡(𝑛)

where 𝑛 is an identifier for the plan and can be trivially assigned using positions in the plan library (i.e. 1 ≤ 𝑛 ≤ |Π|). Once we chose a 
plan rule, it is always successful (𝑝 = 1) and it can be similarly translated into an MDP action, denoted as 𝑎𝑠𝑒𝑙𝑒𝑐𝑡(𝑛) , using the previous 
translation template.

4.3. Agent-level semantics

Agent-level Can+ rules (Fig. 2) determine how an agent responds to events and progresses/completes intentions. There are three 
rules and each has a non-deterministic outcome: 𝐴𝑒𝑣𝑒𝑛𝑡 that selects one event to handle from a set of pending events; 𝐴𝑠𝑡𝑒𝑝 that 
progresses one intention from a set of partially executed intentions; and 𝐴𝑢𝑝𝑑𝑎𝑡𝑒 that removes an unprogressable intention from a set 
of unprogressable intentions. As with 𝑠𝑒𝑙𝑒𝑐𝑡 in Section 4.2, to use these in the Can𝑚

+ model, we need to move from non-deterministic 
rules to a set of deterministic rules parameterised by the outcome. The new rules are

⟨𝑛, 𝑒⟩ ∈𝐸𝑒

⟨𝐸𝑒, ,Γ⟩⇒1 ⟨𝐸𝑒 ⧵ {⟨𝑛, 𝑒⟩}, ,Γ ∪ {⟨𝑛, 𝑒⟩}⟩ 𝐴𝑒𝑣𝑒𝑛𝑡(𝑛)

⟨𝑛,𝑃 ⟩ ∈ Γ ⟨ , ⟨𝑛,𝑃 ⟩⟩→𝑝 ⟨ ′, ⟨𝑛,𝑃 ′⟩⟩
⟨𝐸𝑒, ,Γ⟩⇒𝑝 ⟨𝐸𝑒, ′, (Γ ⧵ {⟨𝑛,𝑃 ⟩}) ∪ {⟨𝑛,𝑃 ′⟩}⟩ 𝐴𝑠𝑡𝑒𝑝(𝑛)

⟨𝑛,𝑃 ⟩ ∈ Γ ⟨ , ⟨𝑛,𝑃 ⟩⟩↛1
⟨𝐸𝑒, ,Γ⟩⇒1 ⟨𝐸𝑒, ,Γ ⧵ {⟨𝑛,𝑃 ⟩}⟩ 𝐴𝑢𝑝𝑑𝑎𝑡𝑒(𝑛)

Event parameters are specified by numbering them based on an ordering on the full set of events, e.g. ⟨𝑛, 𝑒⟩ with 𝑛 ∈ ℕ+ as an 
identifier. We identify (partially executed) intentions based on the identifier of the top level plan that led to this intention, e.g. for 
𝑃 ∈ Γ we assign a label 𝑛 ∈ ℕ+ that is passed alongside the intention. This style of labelling assumes only one instance of an event 
can be handled at once (this is enough to imply the top level plans are also unique). As with 𝑠𝑒𝑙𝑒𝑐𝑡 the transition probability is 1 
in the cases of 𝐴𝑒𝑣𝑒𝑛𝑡(𝑛) and 𝐴𝑢𝑝𝑑𝑎𝑡𝑒(𝑛) as the rule, if selected, always succeeds. The (omitted) MDP actions for rules 𝐴𝑒𝑣𝑒𝑛𝑡(𝑛) and 
𝐴𝑢𝑝𝑑𝑎𝑡𝑒(𝑛) can be similarly given as 𝑎𝐴𝑒𝑣𝑒𝑛𝑡(𝑛) and 𝑎𝐴𝑢𝑝𝑑𝑎𝑡𝑒(𝑛), respectively. The rule 𝐴𝑠𝑡𝑒𝑝(𝑛) says that agent-level transitions depend on 
the intention-level transitions and we need to account for this in the transition probabilities.

5. Bigraph encoding of Can𝒎

+ model

We have shown in previous work [26] that we can describe the original semantics of Can (without the support of uncertain 
beliefs) as an MDP. In this section, we show how we represent uncertain beliefs as epistemic state encoded in bigraphs and how it 
connects with the existing bigraph encoding introduced in [26]. We begin with a brief introduction to bigraphs.

5.1. Bigraphs

Bigraphs are a universal graph-based modelling formalism introduced by Milner [19], with conditional, priority, parameterised, 
and probabilistic extensions [29,20]. Bigraphs have an equivalent algebraic and diagrammatic form, and we use the diagrammatic 
form here.

An example bigraph is in Fig. 4a. It consists of a set of entities, e.g. A, B, drawn as (coloured) shapes.4 Entities can be related 
through nesting (to arbitrary depth), e.g. the B entities inside A. Entities can also be related through hyperlinks (permitting any-to-any 
links rather than just one-to-one as is usual), such as the green link between the B and C entities. Entities have a fixed number of 
links, called the arity, although a link can be disconnected as shown by the C entity in Fig. 4c. The filled grey rectangles denote that 
other (unspecified) entities can exist here. Dashed unfilled rectangles are regions that represent parallel parts of the system: that is, 
these two regions can, but do not have to, share a single parent in some larger system model.

A bigraph represents a system at a single point in time. To allow models to evolve over time we can specify reaction rules of the 
form 𝐿 ▶𝑅, where 𝐿 and 𝑅 are bigraphs. An example reaction rule is in Fig. 4b, which models the disconnection of B and C and 
also removes the nesting of B in A. The filled grey rectangles are called sites and represent parts of the model, below some entity, 
that have been abstracted away. That is, it allows matching on an A with multiple children. Without the site, the rule would only 
match when A had a single B child. Similarly, the use of the name 𝑥 means that it is open which allows B to be connected elsewhere 
during the match (in this case the other B). If there was no name (closed), it would only match exactly one B connected to one C. 
Reaction rules can affect both linking and placement, as shown here with the B entity also moving next to C. Unlike some process 
calculi, Bigraphs do not have a fixed number of entities and it is possible to add and remove entities5 as the model evolves, e.g. you 
could define a rule that adds a new B to an A node.

4 We often use the shape to denote the entity type to reduce the need for excessive labelling.
7

5 But not new entity types.



Science of Computer Programming 242 (2025) 103254B. Archibald, M. Sevegnani and M. Xu

B B C

DA

𝑥

(a)

B C

A

𝑥

B CA

𝑥

▶

(b)

B B C

A D

𝑥

(c)

Fig. 4. (a) Example bigraph, (b) reaction rule, and (c) result after applying (b) to (a). (For interpretation of the colours in the figure(s), the reader is referred to the 
web version of this article.)

𝑠0 𝑎𝑐𝑡
𝑠2

𝑠1

⋯

𝑠𝑛

𝑎𝑐𝑡 = {𝚛𝟷 =𝐿0
𝑤1 ▶𝑅1,𝚛𝟸 =𝐿0

𝑤2 ▶𝑅2,⋯ ,𝚛𝚗 =𝐿0
𝑤𝑛 ▶𝑅𝑛}

where 𝐿0 encodes state 𝑠0 , 𝑅𝑖 encodes 𝑠𝑖 (𝑖 = 1,⋯ , 𝑛), and
𝑤𝑖∑𝑛

𝑗=1 𝑤𝑗

= 𝑝𝑖

𝑝2

𝑝 1

𝑝
𝑛

an MDP action
a (non-empty) set of reaction rules in bigraphs

Fig. 5. Left: MDP action 𝑎𝑐𝑡 applying to state 𝑠0 with a probability 𝑝𝑖 reaching to the state 𝑠𝑖 ((𝑖 ∈ {1, ⋯ , 𝑛}). Right: corresponding bigraph reaction rules to encode 
𝑎𝑐𝑡.

Conditional bigraphs [29] (which we use here) allow extra constraints on rule application by enforcing that a specific bigraph 

occurs (or does not occur) within the sites6 of a match. The syntax of a condition is: if ⟨−, B
,↓⟩ , where the minus sign denotes 

enforces absence a bigraph B, and the down arrow indicates we are checking the sites. An example conditional rule is in where the 
condition enforces that T cannot appear in the site.

Bigraphs allow reaction rules to be weighted, e.g. 𝚛 = 𝐿 
3
▶𝑅 and 𝚛′ = 𝐿 

1
▶𝑅′, such that if both (and only) 𝚛 and 𝚛′ are 

applicable then 𝚛 is three times as likely to apply as 𝚛′. The normalisation will be applied automatically by the BigraphER tool [24]

(an open-source language and toolkit for bigraphs) to obtain the specific probability. Non-deterministic choices (e.g. an MDP action) 
can be modelled as a non-empty set of reaction rules. For example, we can have an MDP action 𝚊 = {𝚛, 𝚛′} and once it is executed, it 
has a distribution of 75% transition from 𝐿 to 𝑅 and 25% from 𝐿 to 𝑅′. Fig. 5 depicts how to encode any MDP action in bigraphs. To 
execute and, importantly, analyse our bigraph model, we employ BigraphER to exhaustively explore all possible behaviours of the 
model to capture the transition systems of an MDP, and states may be labelled using bigraph patterns that assign a state predicate label 
if it contains (a match of) a given bigraph. The labelled MDP transition systems can be then exported for quantitative analysis and 
strategy synthesis in PRISM and Storm by importing the underlying MDPs produced by BigraphER. We reason about the minimum or 
maximum values of properties such as 𝑚𝑎𝑥=?F[ 𝜙 ] in Probabilistic Computation Tree Logic (PCTL) [30]. 𝑚𝑎𝑥=?F[ 𝜙 ] expresses the 
maximum probability of 𝜙 holding eventually in all possible resolutions of non-determinism.

5.2. Bigraph encoding of epistemic states

Recall that a compact epistemic state  is a mapping  ∶𝑡 → (ℤ, ℤ) such that (𝑎) = (𝜇+, 𝜇−) where 𝑡 is a set of all possible 
belief atoms. To model this in bigraphs, we use nesting to associate each atom with a positive and negative value, as shown graphically 
in Fig. 6. We represent 𝜇+ and 𝜇− as parameterised entities, PositiveValue(m) and NegativeValue(n), respectively, and then nest them 
within the entity that represents the belief atom (highlighted in red). Finally, the entire bigraph is then further nested in the belief 
base to show it is a member of a belief base. The site represents the application of this compact epistemic state to other atoms, 
i.e. (𝑏) where 𝑏 ∈𝑡 ⧵ {𝑎}.
8

6 More generally we allow checking both sites, and wider context, e.g. the parents of a bigraph match.



Science of Computer Programming 242 (2025) 103254B. Archibald, M. Sevegnani and M. Xu

PositiveValue(m) NegativeValue(n)

a

BeliefBase

Fig. 6. Bigraph representation of a compact epistemic state for a belief atom (𝑎) = (𝜇+, 𝜇−) where we nest the parameterised bigraph entities PositiveValue(m) and

NegativeValue(n), representing 𝜇+ and 𝜇− respectively, under the entity a for the belief atom 𝑎.

PositiveValue(m) NegativeValue(n)

a

T PositiveValue(m) NegativeValue(n)

a

▶

if ⟨−,
T

,↓⟩,

Fig. 7. Conditional reaction rule for the entailment for a compact epistemic state for a belief atom with PositiveValue(m) and NegativeValue(n) if no truth entailment 
(though symbol − indicating that the bigraph of T, i.e. the truth entailment, should not appear/be matched) and 𝑚 > 𝑛. This condition ensures we do not get duplicate

T entities. The dashed arrow (called the instantiation map) forces the site on the right to be the copy of the site on the left.

Now, we introduce the parameterised reaction rule encoding the comparison between an atom’s positive and negative values. 
Recall that we say an atom is believed to be true by  , denoted as  ⊧ 𝑎 if (𝑎) = (𝜇+, 𝜇−) and 𝜇+ > 𝜇−. Fig. 7 says that if the 
value of m in PositiveValue(m) is greater than the value of n in NegativeValue(n), the atom 𝑎 will be nested a token T in bigraph to 
represent its truth entailment.

5.3. Quantitative analysis and strategy synthesis

We revisit the robotic submarine example from the introduction to show how our approach provides uncertainty modelling, 
quantitative verification, and strategy synthesis. This example is inspired by the SUAVE exemplar [31,32].

5.3.1. Example

A robotic submarine is tasked with finding and inspecting a pipeline located on a seabed, and then sending the inspection results 
to human operators. There are many uncertainty factors: changes in water visibility, potential thruster failure, and unreliability of 
information transmission in seawater. While we consider a simplified implementation it is sufficient to demonstrate the core features 
of our approach, e.g. uncertainty modelling, quantitative verification, and strategy synthesis. Though we only give details of a single 
case study, users of the executable semantics can employ BigraphER to “run” models with different settings, e.g. external events, plan 
libraries, customised uncertain beliefs, and probabilistic actions.

For each part of the mission (scanning, surveying, sending), the submarine can choose to operate at three different sea depths: 
low, medium, and high. The depths have different effects depending on the part of the mission. For example, high depths allow the 
robotic submarine to have better visibility (i.e. the distance in meters within which the submarine can perceive objects) and this 
increases the chance of finding the pipeline during search. The probability of a thruster failure increases at high depths because, 
e.g. seaweed might wrap around the thrusters. Once the inspection is complete, the submarine transmits the collected results to the 
human operators. In this example, we made certain modelling assumptions: first, we assume that the thruster can only fail during 
the survey phase, as this requires active movement, unlike the scanning and reporting phases. Additionally, we assume that when 
the submarine attempts to maintain a specific depth, it does so successfully, meaning that depth is treated as a choice rather than an 
explicit belief.

The agent program for this scenario is in Fig. 8. A short commentary is as follows. Fig. 8a gives the initial uncertain beliefs on 
the conditions in which the robotic submarine is situated. For example, the (compact epistemic) state (𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙) = (3, 1)
shows there is more confidence the thruster is functional than not, and (𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑) = (0, 3) means it is likely the pipe is not yet 
found. Trialling different weights (which could, for example, be extracted from historical data) is possible by simply changing them 
in the compact epistemic state. In the next section, we will show how to support the automation of this entire process, from modelling 
to analysis, through CAN-verify.

Plans for the submarine are given in Fig. 8b. For example, the first plan handles the overall mission 𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑝𝑖𝑝𝑒 which is 
applicable when the agent believes the thruster is functional. To achieve the mission 𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑝𝑖𝑝𝑒, the robotic submarine must 
achieve three internal events (i.e. sub-goals) in sequence (i.e. 𝑓𝑖𝑛𝑑_𝑝𝑖𝑝𝑒; 𝑠𝑢𝑟𝑣𝑒𝑦_𝑝𝑖𝑝𝑒; 𝑟𝑒𝑝𝑜𝑟𝑡_𝑏𝑎𝑐𝑘). For these events, there are 
three plans representing the different depths that can be used for each sub-mission. For example, plans 2–4 allow the submarine 
9

to scan for the pipe at either low, medium, and high depths. Finally, Fig. 8c gives the action descriptions. For example, action 
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(𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙) = (3,1)
(𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑) = (0,3)
(𝑟𝑒𝑝𝑜𝑟𝑡_𝑠𝑒𝑛𝑡) = (0,2)

(a) Uncertain beliefs for submarine in a BDI agent.

1. 𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑝𝑖𝑝𝑒 ∶ 𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙← 𝑓𝑖𝑛𝑑_𝑝𝑖𝑝𝑒; 𝑠𝑢𝑟𝑣𝑒𝑦_𝑝𝑖𝑝𝑒; 𝑟𝑒𝑝𝑜𝑟𝑡_𝑏𝑎𝑐𝑘.
2. 𝑓 𝑖𝑛𝑑_𝑝𝑖𝑝𝑒 ∶ 𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙← 𝑠𝑐𝑎𝑛_𝑙𝑜𝑤.

3. 𝑓 𝑖𝑛𝑑_𝑝𝑖𝑝𝑒 ∶ 𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙← 𝑠𝑐𝑎𝑛_𝑚𝑒𝑑.

4. 𝑓 𝑖𝑛𝑑_𝑝𝑖𝑝𝑒 ∶ 𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙← 𝑠𝑐𝑎𝑛_ℎ𝑖𝑔ℎ.

5. 𝑠𝑢𝑟𝑣𝑒𝑦_𝑝𝑖𝑝𝑒 ∶ 𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑 ← 𝑠𝑢𝑟𝑣𝑒𝑦_𝑙𝑜𝑤.

6. 𝑠𝑢𝑟𝑣𝑒𝑦_𝑝𝑖𝑝𝑒 ∶ 𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑 ← 𝑠𝑢𝑟𝑣𝑒𝑦_𝑚𝑒𝑑.

7. 𝑠𝑢𝑟𝑣𝑒𝑦_𝑝𝑖𝑝𝑒 ∶ 𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑 ← 𝑠𝑢𝑟𝑣𝑒𝑦_ℎ𝑖𝑔ℎ.

8. 𝑟𝑒𝑝𝑜𝑟𝑡_𝑏𝑎𝑐𝑘 ∶ 𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 & 𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑 ← 𝑟𝑒𝑝𝑜𝑟𝑡_𝑙𝑜𝑤.

9. 𝑟𝑒𝑝𝑜𝑟𝑡_𝑏𝑎𝑐𝑘 ∶ 𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 & 𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑 ← 𝑟𝑒𝑝𝑜𝑟𝑡_𝑚𝑒𝑑.

10. 𝑟𝑒𝑝𝑜𝑟𝑡_𝑏𝑎𝑐𝑘 ∶ 𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 & 𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑 ← 𝑟𝑒𝑝𝑜𝑟𝑡_ℎ𝑖𝑔ℎ.

(b) Plans for submarine in a BDI agent.

𝑠𝑐𝑎𝑛_𝑙𝑜𝑤 ∶ 𝑡𝑟𝑢𝑒← [(𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑,3)↦ 0.4, (¬𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑,1)↦ 0.6]
𝑠𝑐𝑎𝑛_𝑚𝑒𝑑 ∶ 𝑡𝑟𝑢𝑒← [(𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑,4)↦ 0.6, (¬𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑,0)↦ 0.4]
𝑠𝑐𝑎𝑛_ℎ𝑖𝑔ℎ ∶ 𝑡𝑟𝑢𝑒← [(𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑,5)↦ 0.9, (¬𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑,1)↦ 0.1]
𝑠𝑢𝑟𝑣𝑒𝑦_𝑙𝑜𝑤 ∶ 𝑡𝑟𝑢𝑒← [(𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙,3)↦ 0.9, (¬𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙,7)↦ 0.1]
𝑠𝑢𝑟𝑣𝑒𝑦_𝑚𝑒𝑑 ∶ 𝑡𝑟𝑢𝑒← [(𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙,1)↦ 0.8, (¬𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙,5)↦ 0.2]
𝑠𝑢𝑟𝑣𝑒𝑦_ℎ𝑖𝑔ℎ ∶ 𝑡𝑟𝑢𝑒← [(𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙,2)↦ 0.6, (¬𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙,6)↦ 0.4]
𝑟𝑒𝑝𝑜𝑟𝑡_𝑙𝑜𝑤 ∶ 𝑡𝑟𝑢𝑒← [(𝑟𝑒𝑝𝑜𝑟𝑡_𝑠𝑒𝑛𝑡,3)↦ 0.9, (¬𝑟𝑒𝑝𝑜𝑟𝑡_𝑠𝑒𝑛𝑡,2)↦ 0.1]
𝑟𝑒𝑝𝑜𝑟𝑡_𝑚𝑒𝑑 ∶ 𝑡𝑟𝑢𝑒← [(𝑟𝑒𝑝𝑜𝑟𝑡_𝑠𝑒𝑛𝑡,3)↦ 0.8, (¬𝑟𝑒𝑝𝑜𝑟𝑡_𝑠𝑒𝑛𝑡,2)↦ 0.2]
𝑟𝑒𝑝𝑜𝑟𝑡_ℎ𝑖𝑔ℎ ∶ 𝑡𝑟𝑢𝑒← [(𝑟𝑒𝑝𝑜𝑟𝑡_𝑠𝑒𝑛𝑡,3)↦ 0.7, (¬𝑟𝑒𝑝𝑜𝑟𝑡_𝑠𝑒𝑛𝑡,2)↦ 0.3]

(c) Probabilistic actions in plans in Fig. 8b.

Fig. 8. Agent programs for a robotic submarine.

Listing 1: A list of properties with its associated value for the robotic submarine where 𝗆𝗂𝗌𝗌𝗂𝗈𝗇_𝗌𝗎𝖼𝖼𝖾𝗌𝗌 denotes the event 𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑝𝑖𝑝𝑒
successfully being processed, and 𝗍𝗁𝗋𝗎𝗌𝗍𝖾𝗋_𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖺𝗅, 𝗉𝗂𝗉𝖾_𝖿𝗈𝗎𝗇𝖽, and 𝗋𝖾𝗉𝗈𝗋𝗍_𝗌𝖾𝗇𝗍 denote the corresponding belief holding true.

𝑚𝑖𝑛=?F[𝗆𝗂𝗌𝗌𝗂𝗈𝗇_𝗌𝗎𝖼𝖼𝖾𝗌𝗌 ] (value 0)
𝑚𝑎𝑥=?F[𝗆𝗂𝗌𝗌𝗂𝗈𝗇_𝗌𝗎𝖼𝖼𝖾𝗌𝗌 ] (value 0.81)
𝑚𝑎𝑥=?F[𝗉𝗂𝗉𝖾_𝖿𝗈𝗎𝗇𝖽 ∧ 𝗍𝗁𝗋𝗎𝗌𝗍𝖾𝗋_𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖺𝗅 ∧ 𝗋𝖾𝗉𝗈𝗋𝗍_𝗌𝖾𝗇𝗍 ] (value 0.73)

𝑠𝑐𝑎𝑛_ℎ𝑖𝑔ℎ ∶ 𝑡𝑟𝑢𝑒 ← [(𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑, 5) ↦ 0.9, (¬𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑, 1) ↦ 0.1] says that the action 𝑠𝑐𝑎𝑛_ℎ𝑖𝑔ℎ has a 90% chance of strengthening 
the belief of 𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑 by the value of 5 or a 10% chance of ¬𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑 by the value of 1.

5.3.2. Quantitative analysis

For analysis, we label states where properties of interest hold. We use 𝗆𝗂𝗌𝗌𝗂𝗈𝗇_𝗌𝗎𝖼𝖼𝖾𝗌𝗌 to denote the event 𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑝𝑖𝑝𝑒 is success-

fully addressed by the robotic submarine. The labels of 𝗍𝗁𝗋𝗎𝗌𝗍𝖾𝗋_𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖺𝗅, 𝗉𝗂𝗉𝖾_𝖿𝗈𝗎𝗇𝖽, and 𝗋𝖾𝗉𝗈𝗋𝗍_𝗌𝖾𝗇𝗍 denote the states where the 
corresponding belief are entailed to be true. A full list of properties checked for this example is in Listing 1.

Property 𝑚𝑖𝑛=?F[ 𝗆𝗂𝗌𝗌𝗂𝗈𝗇_𝗌𝗎𝖼𝖼𝖾𝗌𝗌 ] checks the minimum probability of the event 𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑝𝑖𝑝𝑒 being processed successfully over 
all possible adversaries. This property returns a value of 0, meaning there is a possible situation where the robot fails to complete 
the mission. In this case, it could be that the robotic submarine scanned the seabed at too low depths and missed the pipe. Property 
𝑚𝑎𝑥=?F[ 𝗆𝗂𝗌𝗌𝗂𝗈𝗇_𝗌𝗎𝖼𝖼𝖾𝗌𝗌 ] determines the best possible outcome to address the event 𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑝𝑖𝑝𝑒 and returns a value of 0.81.7 Be-

sides looking at the overall mission success of the agent program, we can also investigate the reachability of beliefs of interest. For 
example, in this case, we may want to know the maximum probability of the robotic submarine eventually believing it has found 
the pipe, successfully sent the results, and still has a functioning thruster, i.e. 𝑚𝑎𝑥=?F[ 𝗉𝗂𝗉𝖾_𝖿𝗈𝗎𝗇𝖽 ∧ 𝗍𝗁𝗋𝗎𝗌𝗍𝖾𝗋_𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖺𝗅 ∧ 𝗋𝖾𝗉𝗈𝗋𝗍_𝗌𝖾𝗇𝗍 ]. 
Interestingly, we notice that the value of property 3 is smaller than the value of property 2. The reason is that an agent program is 
regarded as completed if it can successfully be executed but does not necessarily care about the certain beliefs that may occur due 
to it, e.g. uncertain effects of actions. For example, as long as the robotic submarine can execute action 𝑟𝑒𝑝𝑜𝑟𝑡_𝑙𝑜𝑤, it regards the 
internal event 𝑟𝑒𝑝𝑜𝑟𝑡_𝑏𝑎𝑐𝑘 as achieved, hence the event 𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑝𝑖𝑝𝑒 is also achieved. But action 𝑟𝑒𝑝𝑜𝑟𝑡_𝑙𝑜𝑤 still has some probability, 
resulting in the report not being successfully transmitted to the human operators. This example highlights the importance of being 
able to analyse a richer sets of reachability properties.
10

7 This probability is never 1 as there is always a chance of failing regardless of the depth the submarine chooses.
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Fig. 9. Toolchain overview: 1 agent program compilation to bigraphs, 2 predicate labelling in bigraph model, 3 (exhaustive) execution of programs, 4 built-in 
and user-defined belief-based specification formalisation in PCTL, 5 formal verification.

5.3.3. Strategy synthesis

Properties to be model checked on MDPs usually quantify over strategies (or policies) of the model, i.e. over the different possible 
ways that nondeterminism can be resolved in the model. For example, property 𝑚𝑎𝑥=?F[ 𝗉𝗂𝗉𝖾_𝖿𝗈𝗎𝗇𝖽∧ 𝗍𝗁𝗋𝗎𝗌𝗍𝖾𝗋_𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖺𝗅∧ 𝗋𝖾𝗉𝗈𝗋𝗍_𝗌𝖾𝗇𝗍 ]
determines the maximum probability, over all strategies, of reaching a state in which these beliefs are believed to be true. When check-

ing such properties, you can also ask PRISM to generate a corresponding (optimal) strategy, which yields this maximum probability 
when followed. PRISM generates several types of strategies. The simplest are memoryless deterministic strategies, which pick a single 
action in each state. Here, the optimal adversary instructs the robotic submarine to scan at high depth to get a better vision capability 
to find the pipe, survey at low depth to avoid getting trapped by the seaweeds and causing thruster failure, and send the results at 
low depth to ensure a higher chance of information transmission.

6. CAN-verify

To widen access to formal methods without requiring users to be familiar with complex encoding and verification techniques, we 
extended our automated tool, CAN-verify [27], for BDI programmers to verify the MDP models of epistemic-enabled Can agents 
i.e. Can+. CAN-verify takes as input Can+ programs which supports epistemic beliefs, and supports the following features:

• syntax checking for Can+ programs;

• a symbolic interpreter for Can+ programs;

• exhaustive exploration, i.e. symbolically taking all possible computation paths, of Can+ programs;

• verification, through model checking, of agents against a set of built-in generic agent requirements and (optional) user-defined 
agent requirements that can be expressed in structured natural language;

• verification of agents parameterised by their initial belief base to support analysis of agent behaviours under different initial 
environments.

Our tool utilises the bigraph encoding of the MDP model of a Can agent with epistemic beliefs (i.e. Can+), and runs model 
checking tools as required. The dataflow of the toolchain is in Fig. 9. Step 1 translates input Can+ into bigraphs expressed in the 
BigraphER [33] language according to Section 5. During the translation, static checks are performed and errors/warnings reported to 
users. To verify an agent, the agent requirements in both built-in and user-defined requirements will be compiled as bigraph patterns 
for state predicate labelling ( 2 ) if the pattern matches the current state then the predicate is true. Step 3 combines bigraph models 
representing agent programs and Can+ semantics in Section 4, and asks BigraphER to explore all possible executions. The output 
of BigraphER (an explicit MDP transition system with state predicate labels), and built-in and user-defined temporal logic formulae 
(complied from 4 ) are then verified by PRISM8 ( 5 ). Next, we will go through the features of our tool in detail one by one. The 
source code and the running example of robotic submarine shown in this work, are openly available.9

6.1. Static analysis of BDI programs

Our tool provides static checks of agent programs including reporting syntax errors, type errors e.g. when a plan is used where a 
belief is expected, and undefined errors e.g. when an actions is used but does not exist, or no plan is able to handle a defined event. 
We also support design aids as warnings, for example, reporting if (customisable) limits are violated such as the minimum/maximum 
number of plans for an event.

6.2. Can+ interpreter

As the bigraph model includes the semantics for the Can+, given an initial state we can execute any Can+ programs. Note: there 
is no support to actually execute actions, but only to record their outcomes.

8 Any model checker supporting explicit model import would work. PRISM is chosen as BigraphER natively supports PRISM format.
11

9 https://github .com /Mengwei -Xu /Can -verify.

https://github.com/Mengwei-Xu/Can-verify
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Listing 2: Built-in (lines 1-4) and user-defined (lines 5 and 6) agent requirements. Belief-lists have ∧ semantics i.e. there is a state 
where all beliefs hold at the same time.

Pmax=? [ F ("no_failure" & X ("empty_intention")) ];
Pmin=? [ F ("no_failure" & X ("empty_intention")) ];
Pmax=? [ F ("failure" & X ("empty_intention")) ];
Pmin=? [ F ("failure" & X ("empty_intention")) ];
Pmax=? [ F (<belief-list>) ];
Pmin=? [ F (<belief-list>) ];

Listing 3: Can agent for robotic submarine.

// Initial belief bases
1. thruster_functional : <3, 1>, pipe_found : <0, 3>, report_sent: <0, 2>
2. thruster_functional : <3, 4>, pipe_found : <0, 3>, report_sent: <0, 2>
// External events
inspect_pipe : 1
// Plan library
1 : inspect_pipe : thruster_functional <- find_pipe; survey_pipe; report_back.
2 : find_pipe : thruster_functional <- scan_low.
3 : find_pipe : thruster_functional <- scan_med.
4 : find_pipe : thruster_functional <- scan_high.
5 : survey_pipe : pipe_found <- survey_low.
6 : survey_pipe : pipe_found <- survey_med.
7 : survey_pipe : pipe_found <- survey_high.
8 : report_back : thruster_functional & pipe_found <- report_low.
9 : report_back : thruster_functional & pipe_found <- report_med.
10 : report_back : thruster_functional & pipe_found <- report_high.
// Actions description
scan_low : true<- <pipe_found: {3,4}>,<pipe_found: {1,6}>
scan_med : true<- <pipe_found: {4,6}>,<pipe_found: {0,4}>
scan_high : true<- <pipe_found: {5,9}>,<pipe_found: {1,1}>
survey_low : true<- <thruster_functional: {3,9}>,<thruster_functional: {7,1}>
survey_med : true<- <thruster_functional: {1,8}>,<thruster_functional: {5,2}>
survey_high : true<- <thruster_functional: {2,6}>,<thruster_functional: {6,4}>
report_low : true<- <report_sent: {3,9}>,<report_sent: {2,1}>
report_med : true<- <report_sent: {3,8}>,<report_sent: {2,2}>
report_high : true<- <report_sent: {3,7}>,<report_sent: {2,3}>

6.3. Model checking of BDI programs

Model checking is enabled by taking the executable model of the agent program and constructing a labelled transition system 
in MDP format of the program’s possible executions that allow checking agent requirements against this model. Built-in agent re-

quirements for generic properties include determining the maximum/minimum probability that an event finishes with failure or 
success (these failure or success states are labelled using bigraph predicates [34] automatically). These requirements are translated 
into probabilistic branching time temporal logic formulae e.g. Probabilistic Computation Tree Logic (PCTL) [35,30] for the PRISM 
model checker. Example requirements are in Listing 2. The first 4 requirements are built-in properties that will always be checked 
by default. The last 2 properties are user-defined requirements, checking on e.g. the maximum/minimum probability of some de-

sired/avoided beliefs would hold true in all possible agent behaviours. To avoid requiring users to formalise these properties in PCTL 
syntax, properties are instead expressed in natural language. For example, the input of “What is the maximum probability that even-

tually the belief actual_belief holds?”10 corresponds to the PCTL formula Pmax=?[F("actual_belief")]. This translation is 
performed by the tool as well. Although current support from natural language to formal properties is limited, and an area of future 
work, we focus on this style of property specification as this is what non-expert users often encounter in practice [36]. Finally, to 
verify BDI agents starting from different environmental conditions (i.e. different initial belief bases), our tool supports verification 
from parameterised initial belief bases defined in the Can+ input. This is useful as users do not have to run the agent with each initial 
belief manually and it facilitates a quick comparison of the results from different initial beliefs. Each initial belief set is numbered, 
and the tool automatically runs multiple times to output a result for each initial belief base.

6.4. Example

We now re-visit the robotic submarine again given in Fig. 8 and show how to model check it in CAN-verify without the prerequisite 
of formal modelling and logic. Recall CAN-verify takes an input of a BDI program written in the language of Can+. An agent design 
for it is in Listing 3. The external event inspect_pipe (line 4) initiates the inspection mission, whereas line 2 gives two possible 
12

10 Parser requires exact natural language wording with user-defined strings as beliefs.
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Table 1

States, transitions, construction time (s), and veri-

fication time (s) for property 𝑚𝑎𝑥=?F[ 𝗉𝗂𝗉𝖾_𝖿𝗈𝗎𝗇𝖽 ∧
𝗍𝗁𝗋𝗎𝗌𝗍𝖾𝗋_𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖺𝗅 ∧ 𝗋𝖾𝗉𝗈𝗋𝗍_𝗌𝖾𝗇𝗍 ].

States 211

Transitions 35

Transition system construction time (s) 170.10

Property verification time (s) 0.73

Listing 4: Can agent for drone wetland surveillance.

// Initial belief bases
1. patch1_flood : <0, 0>, status_patch1 : <0, 0>
// External events
survey_patches : 1
// Plan library
1 : survey_patches : true <- survey_patch1; survey_patch2.
2 : survey_patch1 : true <- photo_patch1; report_patch1.
3 : survey_patch2 : true <- photo_patch2; report_patch2.
// Actions description
photo_patch1 : true<- <patch1_flood: {2,8}>,<patch1_flood: {2,2}>
report_patch1 : true<- <status_patch1: {5,7}>,<status_patch1: {5,3}>
photo_patch2 : true<- <patch2_flood: {2,8}>,<patch2_flood: {2,2}>
report_patch2 : true<- <status_patch2: {5,6}>,<status_patch2: {5,4}>

initial uncertain beliefs to allow parameterised model checking against different initial conditions. Lines 7-16 are the exactly replicates 
of the plans given in Fig. 8. Finally, lines 18-26 are the description of actions, and we have adapted the syntax to allow easy parsing. 
In particular, we notice that instead of giving exactly the final probability of the action effects, we rely on the automatic normalisation 
provided in CAN-verify. For example, we have

<pipe_found: {5,9}>,<pipe_found: {1,1}>

is equivalent to

[(𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑,5)↦ 0.9, (¬𝑝𝑖𝑝𝑒_𝑓𝑜𝑢𝑛𝑑,1)↦ 0.1]

By default, CAN-verify will analyse properties such as what is the minimum/maximum probability of an event being eventually 
addressed successfully. To model check belief-based properties, for example, 𝑚𝑎𝑥=?F[ 𝗉𝗂𝗉𝖾_𝖿𝗈𝗎𝗇𝖽 ∧ 𝗍𝗁𝗋𝗎𝗌𝗍𝖾𝗋_𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖺𝗅 ∧ 𝗋𝖾𝗉𝗈𝗋𝗍_𝗌𝖾𝗇𝗍 ], 
we can use the following structured natural language stored in a .txt file:

What is the maximum probability that eventually the beliefs (pipe_found, thruster_functional,
report_sent) hold

CAN-verify will output the same results as shown in Listing 1.

Performance measurements gathered when checking this property are in Table 1 and a dedicated scalability experiment is in 
the next section. Most time is spent in the construction of transition system (as expected) and computing the probability of a PCTL 
property is significantly faster.

6.5. Scalability

We provide empirical insights on the approach, focusing on the scalability of model construction in the underlying bigraph 
formalism. The results are obtained on a laptop with a 16-core Intel Core i7-11800H at 2.30 GHz (hyperthreaded), 16 GB memory, 
and running 64-bit Ubuntu Linux 24.04 LTS. Instructions on how to reproduce this experiment can be found in the model repository.11

For analysis we use the following scenario based on wetland surveillance. An autonomous drone is tasked to check, after a storm, 
whether each patch of land is flooded or not, and subsequently report the land status to human operators at the base. The drone is 
equipped with high-resolution cameras and Machine Learning (ML) algorithms to analyse the captured photos. The employment of 
ML inevitably introduces uncertainty to the analysis of the photos. For example, the drone may mistake a mountain pond as a flood. 
As the drone flies further from the base, the remote condition of the wetland may impact the radio transmission, i.e. the messages sent 
from the drone may fail to reach back to the base. We capture these simplified behaviours of drone wetland surveillance to survey 
two patches of land one by one in Listing 4. Line 2 in Listing 4 gives the initial belief base of the drone. The drone is set to address the 
external event 𝗌𝗎𝗋𝗏𝖾𝗒_𝗉𝖺𝗍𝖼𝗁𝖾𝗌 (line 4). In this case, the drone needs to survey two patches one by one, i.e. 𝗌𝗎𝗋𝗏𝖾𝗒_𝗉𝖺𝗍𝖼𝗁𝟣; 𝗌𝗎𝗋𝗏𝖾𝗒_𝗉𝖺𝗍𝖼𝗁𝟤. 
13

11 https://github .com /Mengwei -Xu /Can -verify /tree /main /Scalability.

https://github.com/Mengwei-Xu/Can-verify/tree/main/Scalability
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Fig. 10. Time to build the MDP, and states, increase exponentially (note log scale). Verification time almost constant and negligible.

Fig. 11. Transition system construction time and states increase exponentially with number of effects.

Lines 2-3 instruct the drone to photograph the land patch and report the results computed by the ML subsystems. The design of such 
a drone from any number of patch surveillance can be similarly given. To evaluate scalability, we increase the number of patches to 
be surveyed.

Fig. 10 gives the time to build the transition system (MDP) and the number of states as the number of patches increases. As 
expected, because we explore all possible paths, there is an exponential increase in time from a couple of seconds to a couple of 
hours. The intersection of states and build time suggests the matches needed for bigraph rewriting are getting more complex, likely 
due to introducing symmetries in the states structure. New solving technologies could improve on this in future and without requiring 
changes from the agent programmer. The same pattern is not observed in the verification time, that remains negligible (under 0.01 s) 
even as the states increase. Finally, to further evaluate the proposed approach against the computational effects of a number of 
outcomes per action, we extend the design of a drone for two patches with an increasing number of outcomes for all actions, e.g. with 
different strengths to increase the positive value of a belief in Listing 4. Fig. 11 shows a similar (expected) exponential increase in 
build time and number of states. This time the states increase much slower, and the matches themselves do not appear to be getting 
significantly more complex (as the lines are growing at similar rates).

7. Reflection

In this section, we reflect on the insights gained by encoding the epistemic states in bigraph and constructing an epistemic-enabled 
extension of Can language, including the process of building bigraph models. We detail our first-hand experience of the value and 
limits of the bigraph approach applied to agent languages and their policies, which is not included in our previous work e.g. [26].

By building on an existing encoding of Can in bigraphs [26], much of the epistemic extension required limited effort. In fact, 
most bigraph encoding extensions are primarily about how to encode the epistemic states separately and then connect them with the 
rest of the encoding in [26]. This high modularity benefits the nature of bigraph which uses parallel regions to separate models into 
14

different, but interacting, perspectives. For example, the epistemic states mainly affect the belief side of encoding. As such, we can 
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separate this belief encoding without worrying about other aspects of the agent. Once it is completed, we can then move on to the 
interaction part of encoding between beliefs and all necessary parts of the rest (which is mainly on entailment).

Besides the parallel nature of the bigraph modelling, we also want to highlight that the graphical nature of bigraphs as seen 
e.g. in Figs. 6 and 7 provided a highly visual modelling and encoding experience and enabled us to locate the bugs with ease during 
the model development. The current encoding for the entailment of the epistemic states suffers from code redundancy as bigraphs do 
not natively support the comparison of two values as the condition of the reaction rule. Our current approach is to fix one parameter 
(either 𝜇+) and parameterise the other. That said, with the use of the CAN-verify tool, the users will not have the need to worry 
about any of these technical issues.

For verification, unlike other approaches in BDI languages, we are the first ones to be able to provide the strategy synthesis. As such, 
our approach can give agent designers an indication of the type of strategies that may be needed for a given application. However, the 
current CAN-verify is unable to provide the automation for this yet. This is largely due to the complex task of presenting the users 
with a friendly strategy (mapping states to actions) without showing them the necessary underlying bigraph-related representation.

We also note that our approach is able to provide reward-based verification (as we have already shown in our previous [26] with 
Storm for reward-based synthesis). But we decided not to show in this paper. One of the reasons is that it is actually very difficult 
to reason about the accumulated rewards for reaching some target set of states if these states cannot be eventually reached with 
probability 1. It is due to a choice that both PRISM and Storm made when designing the reward property specification. They assume 
that if there is a non-zero probability of not reaching the target state (i.e. the probability of reaching it is less than 1), it is reasonable 
to say the path continues indefinitely without reaching the target state (i.e. the overall expected reward for being infinite). This 
severely limits the usage of probabilistic actions, which are crucial in real scenarios. A potential solution is to use the state reward (a 
certain amount of rewards is assigned if a certain state holds). Then the reward information can be specified as a temporal formula in 
property specifications. (e.g. what is the maximum probability of reaching this state which gives some certain reward). Unfortunately, 
this makes modelling and reasoning more cumbersome, and future work is required to investigate this.

Finally, we point out that our approach of extending the state of MDPs with epistemic states is a deliberate choice away from 
Partially observable Markov decision processes (POMDPs) which have been widely used for decision-making and verification under 
uncertainty (detailed related work will be given in the next section). The reason includes two considerations. The first and fundamental 
one is that we believe that the uncertainty of the beliefs is not necessarily to be probabilistic with exact probability (e.g. varying 
levels of confidence) or is difficult to quantify probabilistically, such as ambiguity. The second consideration is the computational 
complexity associated with POMDPs, which often makes them impractical for large-scale problems. By utilising epistemic states, 
we aim to provide a more scalable and conceptually intuitive framework for handling uncertainty in decision-making processes. 
Meanwhile, by having epistemic states in MDPs, we not only manage to obtain more modelling expressiveness from epistemic logic, 
but still being able to use PCTL for analysis which is generally more efficient compared to epistemic logic [37].

8. Related work

Optimal decision-making under uncertainty is a core problem in Artificial Intelligence (AI). A prime example is planning [13,14]: 
studying how to find good or optimal strategies to maximise rewards or the probability of reaching a goal and MDPs are also used as a 
fundamental mathematical models for planning. Formal verification coincides with planning when formulas in temporal logic express 
reachability goals (i.e. a set of final desired states) and verification methods are used to extract a particular evolution of the system that 
makes temporal formulas true. That is, verification focuses on checking if (reachability) properties hold for a system and obtaining 
strategies is a side effect. Our aim is not to compete with AI planning, but to use planning-like benefits in our verification framework 
for BDI agents. A prominent sub-field for finding good strategies is through reinforcement learning (RL) [38]. RL automatically trains 
agents to take actions to maximise a reward in an uncertain environment. Here, a concise specification of an MDP (capturing both the 
agent and the environment) is executed in an initially random manner and over time RL improves the reward of every state-action 
pair executed to yield good strategies. There has been promising work unifying planning, learning and verification [39].

Partially observable Markov decision processes (POMDPs) provide a general framework for decision-making [40] and verifica-

tion [41] under probabilistic beliefs. Given the computational complexity of POMDPs, the typical solution to it is through Monte-Carlo 
sampling e.g. in [42] for planning. Meanwhile, the work [43] proposed a grid-based abstraction of the uncountable belief space in-

duced by partial observability for verification.

The BDI community is interested in the non-determinism e.g. in the selection of event, plan and intention selection. And often this 
is usually done through modifying or replacing the original BDI reasoning entirely with other decision-making techniques. Although 
most BDI agent languages specify selection choices (e.g. plan selection) made by the agent in non-deterministic fashion, it is typical 
in practice to constrain the non-determinism through manual ordering—either statically [5] or at run-time [44]—to enforce simple 
deterministic behaviours. Since manual ordering can be restrictive, some selection strategies are given by using advanced planning 
algorithms [45,46]. For example, in [47] agent programs are compiled to TÆMS framework to represent the coordination relations 
e.g. “enables” and “hinders” between tasks and employ the Design-To-Criteria scheduler for intention selection. Other works show 
many of the intention progress issues can be modelled as AI planning problems and resolved through suitable planners [48]. It is 
not a new idea to integrate advanced decision-making techniques into BDI. There is a large body of work [45] to employ planning 
to synthesise new plans to achieve an event when no pre-defined plan worked or exists. For example, work [49] shows how the 
integration of planning and BDI can be done at the semantic level. Our approach not only ensures the safety of agent behaviours 
15

through formal verification, but also the quality of agent decision-making through optimal adversary generation.
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An increasingly popular topic is intention progression [50], e.g. the contest [51], that helps the agent to make better decisions on 
event/plan/intention selection. Uncertain beliefs are also an important part of the research community. For example, the work [23]

provides the capability to BDI agents to handle different types of uncertainty. However, it primarily is concerned with the interpre-

tation of the BDI programs. Meanwhile, our approach not only supports the same uncertain modelling in [23] but also provides the 
safety of agent behaviours through formal verification under these uncertain beliefs.

Verifying BDI agents using model checking, via Java PathFinder [9], and theorem proving, using Isabelle/HOL [10] has also been 
explored. However, these use fixed schedulers for agent selections strategies, e.g. first-in-first-out for intention selection, and do not 
allow probabilistic action outcomes for the agents and uncertain beliefs. Verification and strategy synthesis have also been successfully 
applied to many traditional probabilistic systems (e.g. security systems or protocols) overviewed in [16]. The contribution of our work 
applied both verification and strategy synthesis to ensure correct and optimal BDI agent behaviours (which feature non-deterministic 
choices, probabilistic action outcomes, and uncertain beliefs) together with a fully automated tool.

9. Future work

There are many avenues for future work, some theoretical and some concerned with practical improvements to our tool.

Providing the capability to provide uncertain beliefs does not take away the inherent challenges of how specify these uncertainties 
in the first place. We have preliminary and ongoing, but promising, results that use the off-the-shelf computer vision algorithms, which 
can provide probability to pattern recognition, to aid the specification of these uncertain beliefs.

Once we accept the concepts of epistemic states, we can have a number of epistemic states rather than an epistemic state over the 
entire set of belief atoms. The agent could have different parts of its beliefs with different uncertainty natures or different revision 
rules. This can be for complexity purposes, too i.e. when certain subsets of beliefs do not influence each other, they can be kept in 
separate epistemic states to simplify the representation of an epistemic state by partitioning the beliefs.

Another line of future work is to synthesise strategy in our CAN-verify tool. As we have mentioned in the reflection, the difficulty 
of providing such automated features is not in the technical implementation but in how to output the actual representation of strategies 
without involving the underlying bigraph syntax. One of the simplest strategies (which is also the one we focus on in this paper) 
are memoryless deterministic strategies, which pick a single action in each state for a MDP. In the BDI setting, the action would 
correspond to what semantics rules are applied, whereas the states the configuration of the agents. However, as the state of a BDI 
agent is encoded in the Bigraph language, to allow the users to know what configuration of the agents is in, we need to translate the 
bigraph to BDI configuration again, i.e. a decoder process. We anticipate such an automated feature would immensely support the 
control side of autonomous systems when required.

Finally, the current implementation of textual property specification in our tool relies on simple string matching, requiring exact 
wording and structure with limited flexibility in specifying user-defined properties. This approach allows to capture some common 
properties such as checking whether a belief will hold. However, it admittedly does not capture all possible properties (which could 
be specified in PCTL). Though translating generic natural language into PCTL formulas is outwith the scope of this work, we view 
this early-stage natural language support essential to make property specification more user-centric. For future work, we intend to 
support practitioners with formal methods training to directly provide formally specified property in PCTL. For other users, we plan 
to integrate with our tool an existing property elicitation interface such as NASA’s Formal Requirements Elicitation Tool (FRET) [52]

or large language models-based approaches e.g. [53] to support specification in less restricted natural language settings.

10. Conclusion

Quantitative verification and strategy synthesis is a powerful technique for analysing systems and synthesising strategies that 
exhibit non-deterministic, probabilistic behaviours for autonomous agents operating with uncertain beliefs.

We have shown how epistemic states can be employed to allow us to model uncertain beliefs within BDI agents, and how to model 
these agents in a quantitative verification setting. To achieve this, we translate the Can language (which formalises the behaviour 
of a classical BDI agent), with added epistemic states to a Markov Decision Process model. This supports both non-deterministic 
decision-making (e.g. which plan to select), probabilistic agent action outcomes (e.g. imprecise actuators), and uncertain beliefs 
(e.g. noise sensors). The resulting model, Can𝑚

+ , is encoded and executed using Milner’s bigraphs and the BigraphER tool. This 
allows quantitative analysis and strategy synthesis using popular probabilistic model-checking tools including PRISM and Storm. This 
approach is automated via the CAN-verify, and aims to meet the growing demand for safe autonomy through formal verification, 
e.g. for early error detection and design improvement, without the costs of applying it e.g. formalisation effort.
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𝑎𝑐𝑡 ∶ 𝜓 ← 𝜇 𝜇((𝑙𝑖,𝑚𝑖)) = 𝑝𝑖  ⊨ 𝜓

⟨ , 𝑎𝑐𝑡⟩→𝑝𝑖
⟨◦(𝑙𝑖,𝑚𝑖), 𝑛𝑖𝑙⟩ 𝑎𝑐𝑡𝑝

Δ= {𝜑 ∶ 𝑃 ∣ (𝑒′ = 𝜑← 𝑃 ) ∈ Π ∧ 𝑒′ = 𝑒}
⟨ , 𝑒⟩→1 ⟨ , 𝑒 ∶ (∣ Δ ∣)⟩ 𝑒𝑣𝑒𝑛𝑡

⟨𝑛,𝜑 ∶ 𝑃 ⟩ ∈Δ  ⊧ 𝜑

⟨ , 𝑒 ∶ (∣ Δ ∣)⟩→1 ⟨ , 𝑃 ⊳ 𝑒 ∶ (∣ Δ ⧵ {⟨𝑛,𝜑 ∶ 𝑃 ⟩} ∣)⟩ 𝑠𝑒𝑙𝑒𝑐𝑡(𝑛)

⟨ , 𝑃1⟩→𝑝 ⟨ ′, 𝑃 ′
1⟩

⟨ , 𝑃1 ⊳ 𝑃2⟩→𝑝 ⟨ ′, 𝑃 ′
1 ⊳ 𝑃2)⟩

⊳; ⟨ , (𝑛𝑖𝑙 ⊳ 𝑃2)⟩→1 ⟨ ′, 𝑛𝑖𝑙⟩⊳⊤

𝑃1 ≠ 𝑛𝑖𝑙 ⟨ , 𝑃1⟩↛1 ⟨ , 𝑃2⟩→𝑝 ⟨ ′, 𝑃 ′
2⟩

⟨ , 𝑃1 ⊳ 𝑃2⟩→𝑝 ⟨ ′, 𝑃 ′
2⟩

⊳⊥

⟨ , 𝑃 ⟩→𝑝 ⟨ ′, 𝑃 ′⟩
⟨ , (𝑛𝑖𝑙;𝑃 )⟩→𝑝 ⟨ ′, 𝑃 ′⟩ ;⊤

⟨ , 𝑃1⟩→𝑝 ⟨ ′, 𝑃 ′
1⟩

⟨ , (𝑃1;𝑃2)⟩→𝑝 ⟨ ′, (𝑃 ′
1 ;𝑃2)⟩

;
⟨ , 𝑃1⟩→𝑝 ⟨ ′, 𝑃 ′

1⟩
⟨ , (𝑃1‖𝑃2)⟩→𝑝 ⟨ ′, (𝑃 ′

1‖𝑃2)⟩
‖1

⟨ , 𝑃2⟩→𝑝 ⟨ ′, 𝑃 ′
2⟩

⟨ , (𝑃1‖𝑃2)⟩→𝑝 ⟨ ′, (𝑃1‖𝑃 ′
2 )⟩

‖2 ⟨ , (𝑛𝑖𝑙‖𝑛𝑖𝑙)⟩→1 ⟨ , 𝑛𝑖𝑙⟩ ‖⊤

 ⊧ 𝜑𝑠

⟨ ,goal(𝜑𝑠,P, 𝜑𝑓 )⟩→1 ⟨ , 𝑛𝑖𝑙⟩𝐺𝑠

 ⊧ 𝜑𝑓

⟨ ,goal(𝜑𝑠,P, 𝜑𝑓 )⟩→1 ⟨ , ?false⟩𝐺𝑓

𝑃 ≠ 𝑃1 ⊳ 𝑃2  ⊭𝜑𝑠  ⊭𝜑𝑓

⟨ ,goal(𝜑𝑠,P, 𝜑𝑓 )⟩→1 ⟨ ,goal(𝜑𝑠,P ⊳ 𝑃 ,𝜑𝑓 )⟩𝐺𝑖𝑛𝑖𝑡

 ⊭𝜑𝑠  ⊭𝜑𝑓 ⟨ , 𝑃1⟩→𝑝 ⟨ ′, 𝑃 ′
1⟩

⟨ ,goal(𝜑𝑠,𝑃1 ⊳ 𝑃2, 𝜑𝑓 )⟩→𝑝 ⟨ ′,goal(𝜑𝑠,𝑃
′
1 ⊳ 𝑃2, 𝜑𝑓 )⟩

𝐺;
 ⊭𝜑𝑠  ⊭𝜑𝑓 ⟨ , 𝑃1⟩↛1

⟨ ,goal(𝜑𝑠,𝑃1 ⊳ 𝑃2, 𝜑𝑓 )⟩→1 ⟨ ,goal(𝜑𝑠,𝑃2 ⊳ 𝑃2, 𝜑𝑓 )⟩𝐺⊳

Fig. 12. Intention-level Can+ semantics.

⟨𝑛, 𝑒⟩ ∈𝐸𝑒

⟨𝐸𝑒, ,Γ⟩⇒1 ⟨𝐸𝑒 ⧵ {⟨𝑛, 𝑒⟩}, ,Γ ∪ {⟨𝑛, 𝑒⟩}⟩𝐴𝑒𝑣𝑒𝑛𝑡(𝑛)

⟨𝑛,𝑃 ⟩ ∈ Γ ⟨ , ⟨𝑛,𝑃 ⟩⟩→𝑝 ⟨ ′, ⟨𝑛,𝑃 ′⟩⟩
⟨𝐸𝑒, ,Γ⟩⇒𝑝 ⟨𝐸𝑒, ′, (Γ ⧵ {⟨𝑛,𝑃 ⟩}) ∪ {⟨𝑛,𝑃 ′⟩}⟩𝐴𝑠𝑡𝑒𝑝(𝑛)

⟨𝑛,𝑃 ⟩ ∈ Γ ⟨ , ⟨𝑛,𝑃 ⟩⟩↛1

⟨𝐸𝑒, ,Γ⟩⇒1 ⟨𝐸𝑒, ,Γ ⧵ {⟨𝑛,𝑃 ⟩}⟩𝐴𝑢𝑝𝑑𝑎𝑡𝑒(𝑛)

Fig. 13. Agent-level Can+ semantics.
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Appendix A

We provide the full set of semantic rules of both intention-level semantics (Fig. 12) and agent-level semantics (Fig. 13) for Can+. 
As the full set of agent-level semantics is already explained in Section 4.3, we note that most of cases in intention-level semantics 
simply need to replace the belief base  with  and take into account the probability of other intention-level semantics, in particular, 
in construct of e.g. 𝑃1; 𝑃2.
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