
Science of Computer Programming 241 (2025) 103233

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

CAN-Verify: Automated analysis for BDI agents

Mengwei Xu a,∗, Blair Archibald b, Michele Sevegnani b

a School of Computing, Newcastle University, UK
b School of Computing Science, University of Glasgow, UK

A R T I C L E I N F O A B S T R A C T

Keywords:

BDI agents

Modelling

Verification

We present CAN-Verify, an automated tool for analysing BDI agents written in the Conceptual
Agent Notation (Can) language. CAN-Verify includes support for syntactic error detection before
agent execution, agent program interpretation (running agents), and model-checking of agent
programs (analysing agents). The model checking supports verifying the correctness of agents
against both generic agent requirements, such as if a task is accomplished, and user-defined re-

quirements, such as certain beliefs eventually holding. The latter can be expressed in structured
natural language, allowing the tool to be used by agent programmers without formal training in
the underlying verification techniques.

1. Motivation

Belief-Desire-Intention agents are a popular model of rational agency. Beliefs represent an agent’s (possibly incomplete, possibly
incorrect) information about itself, other agents, and its environment; desires represent the agent’s long-term goals; and intentions

represent the goals that the agent is actively pursuing.

The design of agents is far from trivial due to a mix of declarative specification (a description of the state sought), procedural
specification (a set of instructions to perform), failure handling, and inherently interleaved concurrent behaviours (e.g. multi-tasking).
Crucially, this complexity raises concerns about the safety and trustworthiness of the deployment of these agents.

To tackle these challenges we introduce CAN-Verify, an automated verification tool for BDI agents specified using the Conceptual
Agent Notation (Can) language that is a superset of the popular BDI language AgentSpeak [1]. Can supports sophisticated features
such as declarative goals, concurrent processes, and mechanisms for recovering from failures through selecting alternative plans. CAN-

Verify takes a Can program and provides several verification capabilities including 1. static analysis of Can programs, 2. symbolic
execution to build the set of all possible executions, and 3. verification through model checking over these executions. We support
verification of Can programs with properties based on both generic agent requirements and optional user-defined requirements in
structured natural language. We support verification of agents parameterised by their initial belief base that allows analysis of agent
behaviours under different initial environments. This ensures the correct design of the agents before actual deployment under different
initial conditions.

* Corresponding author.
Available online 15 November 2024
0167-6423/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail addresses: mengwei.xu@newcastle.ac.uk (M. Xu), blair.archibald@glasgow.ac.uk (B. Archibald), michele.sevegnani@glasgow.ac.uk (M. Sevegnani).

https://doi.org/10.1016/j.scico.2024.103233

Received 28 March 2024; Received in revised form 5 August 2024; Accepted 13 November 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:mengwei.xu@newcastle.ac.uk
mailto:blair.archibald@glasgow.ac.uk
mailto:michele.sevegnani@glasgow.ac.uk
https://doi.org/10.1016/j.scico.2024.103233
https://doi.org/10.1016/j.scico.2024.103233
http://creativecommons.org/licenses/by/4.0/

Science of Computer Programming 241 (2025) 103233M. Xu, B. Archibald and M. Sevegnani

Fig. 1. Toolchain overview: 1 agent program compilation to bigraphs, 2 predicate labelling in bigraph model, 3 (exhaustive) execution of programs, 4 built-in
and user-defined belief-based specification formalisation in CTL, 5 formal verification.

./CAN-Verify [options] [-p prop.txt] file.can

-static Do a static check on the CAN syntax

-dynamic Verify the CAN model with BigraphER and PRISM

-p Property file for PRISM

-Ms Maximum number of states allowed

-mp Minimum number of plans required

-Mp Maximum number of plans allowed

-mc Minimum number of characters required

-Mc Maximum number of characters allowed

-big Export the CAN model to .big file

--help Display this list of options

Fig. 2. CAN-Verify user options (-help).

2. Existing approaches

Existing approaches in automating reasoning for BDI agents are either through model checking or theorem proving. For example,
the MCAPL framework [2] implements a BDI language in Java, and verifies it using the Java PathFinder [3] program model checker.
This approach verifies the implementation of the agents rather than the semantics of the language. This can lead to discrepancies. For
example, Gwendolen [4] (supported by MCAPL) only selects the first applicable plan, while the language semantics describing BDI
agents usually allow any applicable plan to be chosen. Theorem proving via automated proof assistants such as Isabelle/HOL [5] has
been applied to formalise and verify agents defined using the GOAL language [6]. Unlike Can, GOAL [7] does not allow to select
pre-defined plans from a library but instead selects individual actions (or a sequence of actions) in a purely reactive fashion. Crucially,
none of the model checking or theorem proving tools are currently fully automated and do not help users with error-prone translation
from BDI languages and the specification of complex verification tasks. We provide the first tool that supports automated reasoning
about Can programs without requiring users to have specialist knowledge of verification techniques or formal logic.

3. CAN-Verify overview

The theoretical foundation of CAN-Verify is to analyse an agent by exploring its possible behaviours via an executable se-

mantics [8]. These semantics are available through an encoding into Milner’s Bigraphs [9]—a computational model based on
graph-rewriting.1 We use BigraphER [10] as rewrite engine to compute a labelled transition system and PRISM [11] to analyse
it. The detailed software artifacts can be found in Table 1.

3.1. Tool architecture

The architecture of CAN-Verify was first presented in detail in [12]. We briefly summarise it here. Fig. 1 shows the logical
organisation of our toolchain and how it integrates with external tools. There are five computational steps. Step 1 translates input

Can programs into bigraphs expressed in the BigraphER [10] language. During the translation, static checks are performed and
errors/warnings reported to users. Step 2 translates the static aspects of the requirements as bigraph patterns for state labelling. The
intended semantics is that a predicate is assigned to a state if the corresponding pattern is an occurrence. Step 3 combines bigraph
models representing agent programs and Can semantics, and uses BigraphER to produce a labelled transition system (of all possible
executions). Step 4 encodes the temporal aspects of the requirements in CTL formulae [13]. Step 5 takes the labelled transition
system produced by BigraphER and a set of CTL formualae (from 4) as input for PRISM to perform model checking.

For end-users, CAN-Verify is implemented as a command line program. Its synopsis is in Fig. 2. The mandatory input is a single

Can program: file.can. A minimal example using simple propositional logic is given in Listing 1. The -static option performs
static analysis of agent programs including reporting type errors e.g. when a plan is used where a belief is expected, and undefined
errors e.g. when an action is used but not defined, or when no plan is specified to handle a defined event.
2

1 We support the option -big for bigraph-level inspection and analysis.

1

2

3

4

5

6

7

8

9

10

11

12

13

14
Science of Computer Programming 241 (2025) 103233M. Xu, B. Archibald and M. Sevegnani

Listing 1: Example Can file with parameterised initial belief bases.

// Initial belief bases
1. at_home, car_available
2. at_home, car_not_available, no_bus_strike
3. at_home, car_not_available, bus_strike
// External events
travelling
//Plan library
travelling: at_home&car_available <- drive_to_work.
travelling: at_home&car_not_available&no_bus_strike <- bus_to_work.
travelling: at_home&car_not_available&bus_strike <- walk_to_work.
// Actions description
drive_to_work:at_home&car_available<-<{at_home},{at_work}>
bus_to_work:at_home&car_not_available&no_bus_strike <-<{at_home},{at_work}>
walk_to_work:at_home&car_not_available&bus_strike <-<{at_home},{at_work}>

The -dynamic option performs model checking. By default this is using built-in agent requirements, e.g. for generic properties
such as determining if for some/all executions an event finishes with failure or success. Customised properties can be provided through

-p prop.txt and consist of a list of structured natural language specifications. We focus on a style of property specification that
checks if an agent eventually believes some beliefs to be true to allow the user to interrogate the states where the agent may find
itself. For example, a user may specify an input of “In all possible executions, eventually the belief at_work holds”. CAN-Verify

translates this automatically to the corresponding CTL formula “A [F ("at_work")]” allowing a model checker (e.g. PRISM) to
verify if the agent will eventually arrive at the work place. The current implementation of textual property specification is based on
simple string matching, so requires exact wording and structure with some fixed free variable locations, e.g. holes for the beliefs the
user can specify. This captures common properties, i.e. checking a belief holds, but does not capture all possible properties (that could
be specified in CTL; and experienced users can manually provide a CTL property). Translating from generic natural language to CTL
formulas is outwith the scope of this work. A potential solution would be to integrate with our tool an existing property elicitation
interface such as NASA’s Formal Requirements Elicitation Tool (FRET) [14].

CAN-Verify allows the verification of BDI agents under a family of initial conditions. This is supported by allowing multiple initial
belief bases to be defined in the Can file. For example, the program in Listing 1 specifies three initial belief bases corresponding to
three different situations for an agent to start with on getting to the work place from home. This eliminates the need for manual
runs for each set of belief base, and enables comparison of outcomes across different initial conditions. The next section of code in
Listing 1 is marked by comment External events in line 5. It contains a list of events for the agent to address; in this case, it
is to plan a trip (i.e. travelling). Section Plan library starting in line 7 gives the plans to address the events under different
situations. For example, the first plan in line 8, which can address the event travelling, says that if the car is available, then the
agent can drive to work from home. Finally, in section Actions description, actions are defined in terms of pre-conditions and
belief base updates. For example, action drive_to_work in line 12 says that it is applicable if it is at home and a car is available.
Executing this action will result in deleting belief at_home and adding at_work into the belief base.

4. Planned future development

New theoretical breakthroughs in executable semantics will be integrated with CAN-Verify. For example, we provide a prob-

abilistic semantics of Can allowing quantitative verification, e.g. probabilistic plan selection policies and probabilistic action out-

comes [15,16]. We can also perform strategy synthesis, e.g. what plan to select next, utilising Action Bigraphs [17] which allow
non-determinism. We plan to extend agents with uncertain beliefs. In all cases, as we already build on bigraphs, we anticipate a small
software engineering effort to extend CAN-Verify to incorporate the new encodings.

Metadata

Table 1

Code metadata.

Nr. Code metadata description

C1 Current code version v1

C2 Permanent link to code/repository used for this code version https://github.com/Mengwei-Xu/CAN-Verify-SCP-Tool

C3 Permanent link to Reproducible Capsule https://github.com/Mengwei-Xu/CAN-Verify-SCP-Tool

C4 Legal Code License Simplified BSD License

C5 Code versioning system used git

C6 Software code languages, tools, and services used OCaml

C7 Compilation requirements, operating environments and
dependencies

BigraphER [10] and PRISM [11]

C8 If available, link to developer documentation/manual https://github.com/Mengwei-Xu/CAN-Verify-SCP-Tool

C9 Support email for questions mengwei.xu@newcastle.ac.uk
3

https://github.com/Mengwei-Xu/CAN-Verify-SCP-Tool
https://github.com/Mengwei-Xu/CAN-Verify-SCP-Tool
https://github.com/Mengwei-Xu/CAN-Verify-SCP-Tool
mailto:mengwei.xu@newcastle.ac.uk

Science of Computer Programming 241 (2025) 103233M. Xu, B. Archibald and M. Sevegnani

CRediT authorship contribution statement

Mengwei Xu: Writing – original draft. Blair Archibald: Writing – review & editing. Michele Sevegnani: Writing – review &
editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This work is supported the Newcastle University (UK), EPSRC grants EP/S035362/1, and an Amazon Research Award on Auto-

mated Reasoning.

References

[1] A.S. Rao, AgentSpeak (L): BDI agents speak out in a logical computable language, in: European Workshop on Modelling Autonomous Agents in a Multi-Agent
World, Springer, 1996, pp. 42–55.

[2] L.A. Dennis, et al., Model checking agent programming languages, Autom. Softw. Eng. 19 (1) (2012) 5–63.

[3] G. Brat, K. Havelund, S. Park, W. Visser, Model checking programs, in: Proceedings of IEEE International Conference on Automated Software Engineering, IEEE,
2000, pp. 3–11.

[4] L.A. Dennis, Gwendolen semantics: 2017, 2017.

[5] T. Nipkow, M. Wenzel, L.C. Paulson, Isabelle/HOL: a Proof Assistant for Higher-Order Logic, Springer, 2002.

[6] A.B. Jensen, Machine-checked verification of cognitive agents, in: Proceedings of the 14th International Conference on Agents and Artificial Intelligence, 2022,
pp. 245–256.

[7] K.V. Hindriks, F.S. De Boer, W. Van Der Hoek, J.-J.C. Meyer, Agent programming with declarative goals, in: Intelligent Agents VII Agent Theories Architectures
and Languages: 7th International Workshop, Proceedings, ATAL 2000 Boston, MA, USA, July 7–9, 2000, vol. 7, Springer, 2001, pp. 228–243.

[8] B. Archibald, M. Calder, M. Sevegnani, M. Xu, Modelling and verifying BDI agents with bigraphs, Sci. Comput. Program. 215 (2022) 102760.

[9] R. Milner, The Space and Motion of Communicating Agents, Cambridge University Press, 2009.

[10] M. Sevegnani, M. Calder, BigraphER: rewriting and analysis engine for bigraphs, in: Proceedings of International Conference on Computer Aided Verification,
Springer, 2016, pp. 494–501.

[11] M. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: verification of probabilistic real-time systems, in: G. Gopalakrishnan, S. Qadeer (Eds.), Proc. 23rd International
Conference on Computer Aided Verification (CAV’11), in: LNCS, vol. 6806, Springer, 2011, pp. 585–591.

[12] M. Xu, T. Rivoalen, B. Archibald, M. Sevegnani, CAN-Verify: a verification tool for BDI agents, in: International Conference on Integrated Formal Methods,
Springer, 2023, pp. 364–373.

[13] E.M. Clarke, E.A. Emerson, Design and synthesis of synchronization skeletons using branching-time temporal logic, in: D. Kozen (Ed.), Logics of Programs,
Workshop, Yorktown Heights, New York, USA, in: Lecture Notes in Computer Science, vol. 131, May 1981, pp. 52–71.

[14] M. Farrell, M. Luckcuck, O. Sheridan, R. Monahan, Fretting about requirements: formalised requirements for an aircraft engine controller, in: Requirements
Engineering: Foundation for Software Quality: 28th International Working Conference, Proceedings, REFSQ 2022, Birmingham, UK, March 21–24, 2022, Springer,
2022, pp. 96–111.

[15] B. Archibald, M. Calder, M. Sevegnani, M. Xu, Probabilistic BDI agents: actions, plans, and intentions, in: Proceedings of Software Engineering and Formal
Methods, Springer International Publishing, 2021, pp. 262–281.

[16] B. Archibald, M. Calder, M. Sevegnani, M. Xu, Quantitative modelling and analysis of BDI agents, Softw. Syst. Model. (2023).
4

[17] B. Archibald, M. Calder, M. Sevegnani, Probabilistic bigraphs, Form. Asp. Comput. 34 (2) (2022) 1–27.

http://refhub.elsevier.com/S0167-6423(24)00156-4/bibEC83A5CFEEFCF0BB7E1EF8441C708B22s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bibEC83A5CFEEFCF0BB7E1EF8441C708B22s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bibC3582DDB27BFCF3C9DF68448C3640632s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bib5100A4AED93E9A8249055443F941DD36s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bib5100A4AED93E9A8249055443F941DD36s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bibEB150DBDA4BFAB11F3EB27E5F6CDE724s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bibD9CF5170BBD378A44C0D1F08D62280B9s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bibD9CF5170BBD378A44C0D1F08D62280B9s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bib6869073D0B15B7D2E62871BCD664366As1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bib6869073D0B15B7D2E62871BCD664366As1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bib8E7DFDFCE0FE3634F740FEC622F3F7A3s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bibBE61C91D283622DF6DC1522E0AE70C1Bs1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bibDC9746C1B1DFC5703B3D21537AF93A14s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bibDC9746C1B1DFC5703B3D21537AF93A14s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bib83BDB4CE94FCA958F8FCA99D0D4CB401s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bib83BDB4CE94FCA958F8FCA99D0D4CB401s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bib5A78F2411760B112315B650CBFB66BB8s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bib5A78F2411760B112315B650CBFB66BB8s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bibAFFE7202F6AB09A3C46262F11E3EFE41s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bibAFFE7202F6AB09A3C46262F11E3EFE41s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bib899AB14ED9604811C86827EB7CE47121s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bib899AB14ED9604811C86827EB7CE47121s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bib899AB14ED9604811C86827EB7CE47121s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bibA909AE285713AFEA8AF1308626A83098s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bibA909AE285713AFEA8AF1308626A83098s1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bibA29E7C23138D73B64A0A843BF8059F1Bs1
http://refhub.elsevier.com/S0167-6423(24)00156-4/bib744E36F8F405E92F1667462CA6A32D8Es1

	CAN-Verify: Automated analysis for BDI agents
	1 Motivation
	2 Existing approaches
	3 CAN-Verify overview
	3.1 Tool architecture

	4 Planned future development
	Metadata
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

