
Probabilistic BDI Agents: Actions, Plans,
and Intentions

Blair Archibald, Muffy Calder, Michele Sevegnani, and Mengwei Xu(B)

University of Glasgow, Glasgow, UK
{blair.archibald,muffy.calder,michele.sevegnani,mengwei.xu}@glasgow.ac.uk

Abstract. The Belief-Desire-Intention (BDI) architecture is a popular
framework for rational agents, yet most verification approaches are lim-
ited to analysing qualitative properties, for example whether an intention
completes. BDI-based systems, however, operate in uncertain environ-
ments with dynamic behaviours: we may need quantitative analysis to
establish properties such as the probability of eventually completing an
intention. We define a probabilistic extension to the Conceptual Agent
Notation (CAN) for BDI agents that supports probabilistic action out-
comes, and probabilistic plan and intention selection. The semantics is
executable via an encoding in Milner’s bigraphs and the BigraphER tool.
Quantitative analysis is conducted using PRISM. While the new seman-
tics can be applied to any CAN program, we demonstrate the extension
by comparing with standard plan and intention selection strategies (e.g.
ordered or fixed schedules) and evaluating probabilistic action executions
in a smart manufacturing scenario. The results show we can improve sig-
nificantly the probability of intention completion, with appropriate prob-
abilistic distribution. We also show the impact of probabilistic action
outcomes can be marginal, even when the failure probabilities are large,
due to the agent making smarter intention selection choices.

Keywords: BDI agents · Quantitative analysis · Bigraphs

1 Introduction

A well-studied and popular architecture for developing rational agents is the
Belief-Desire-Intention (BDI) paradigm. BDI paradigm builds upon a sound
theoretical foundation to model an agent where (B)eliefs represent what the
agent knows, (D)esires what the agent wants to bring about, and (I)ntentions
the desires the agent is currently acting upon. BDI agents have inspired many
agent-oriented programming languages including AgentSpeak [1], Can [2], and
CanPlan [3], 3APL [4], and 2APL [5] along with a collection of mature soft-
ware toolkits and platforms including JACK [6], Jason [7], and Jadex [8]. BDI
agents have been recognised for their efficiency and scalability in areas such as
business [9], healthcare [10], and engineering [11].

In BDI languages, desires and intentions are often represented using a plan
library. Each plan describes a course of actions which an agent can perform
c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 262–281, 2021.
https://doi.org/10.1007/978-3-030-92124-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-92124-8_15

Probabilistic BDI Agents: Actions, Plans, and Intentions 263

to address an event given some beliefs hold, while the set of intentions are
the plans currently being executed. Typically BDI languages: (1) assume that
action outcomes (i.e. the effects on external environment) are deterministic, (2)
remain agnostic internally to the choice of an applicable plan to bring about
its desires, (3) remain agnostic internally to the order that intentions are pro-
gressed. These assumptions facilitate the verification of agent behaviour through
a non-deterministic underlying transition system (e.g. [12,13]), where plan and
intention selection denotes branching choices and actions have a single outcome.
Unfortunately, this often does not adequately represent behaviour in uncertain
environments such as cyber-physical robotics systems (e.g. surveyed in [14]) with
uncertain sensors, and actuators.

For example, the outcome of an action may be probabilistic due to sensor
noise and imprecise actuation, and plans and intentions are not created equally
and are likely to have different characteristics such as preference and urgency.
As a result, there is a growing need for formal techniques that can handle quan-
titative properties of agent-based systems under uncertainty.

We employ the following robot packaging task for smart manufacturing as
an example, giving detailed quantitative analysis in Sect. 4. The robot insulates
products with suitable wrapping bags, to prevent temperature rise and conse-
quent spoilage, and then transfers the wrapped products to a storage location.
There are two types of wrapping bags: premium and standard. The standard
wrapping is preferred as the cheaper option, however it may not be effective if
the product temperature is already too high, and/or the packaging occasion-
ally breaks, which results in damaged product (i.e. a negative action outcome).
Before wrapping the products, the robot also has to decide which product to
handle first (as there may be multiple products waiting), meaning handling a
product before it spoils requires a notion of urgency. While it is important to
prioritise the more urgent products, it is also sensible to progress less urgent
ones from time-to-time, before they also become urgent. So we need to model
and quantify agent behaviour when there is a range of choices, inherent uncer-
tainty, and characteristics of preference and urgency. For example, we may wish
to know the probability the robot can complete packaging under different sched-
ules, negative outcomes, and decisions.

In the BDI community, probabilistic action outcomes are usually implicit—
requiring the agent to sense failures and revise the beliefs (i.e. to enable new
plans)—and are often disregarded when modelling. Although most agent lan-
guage semantics specify non-deterministic plan selection, e.g. in [2], it is typical
in practice for plans to be ordered—either statically [7] or at run-time [15]—to
enforce deterministic branching. While desirable to exploit the highest ordered
plan, it may be worthwhile exploring other non-highest order plans every now
and then to avoid being stuck in a local maximum. Similarly, intention selection
is also not implemented in a fully non-deterministic fashion either, but in a fixed
schedule, e.g. round robin (executing a step of each intention in turn).

We argue that the highest ordering (i.e. local maximum) and fixed schedules
(e.g. round robin) are not always the best approach to plan/intention selection and

264 B. Archibald et al.

suggest agents should support probabilistic plan/intention selection along with the
need to evaluate the undesired outcomes of actions. Therefore, we present a formal
approach to specify, model, and quantitatively analyse BDI agents with probabilis-
tic action outcomes and plan/intention selections drawn from a probability distri-
bution. Quantitative verification, e.g. asking the probability some intention com-
pletes, aids the design of agents by enabling plan and intention selection functions
to be explored, and mitigates the risk of operating in the uncertain environments
by providing quantitative assurance.

We have extended the operational semantics of Can language in [2] to a
probabilistic setting. Can is chosen as it features a high-level agent program-
ming language that captures the essence of BDI concepts without describing
implementation details such as data structures. As a superset of AgentSpeak [1],
Can includes advanced BDI agent behaviours such as reasoning with declarative
goals, concurrency, and failure recovery, which are necessary for our smart man-
ufacturing example modelled in Sect. 4. Importantly, although we focus on Can,
the language features are similar to those of other mainstream BDI languages
and the same modelling techniques would apply to other BDI programming lan-
guages. We build on our previous work on an executable semantics of Can [16],
based on Milner’s Bigraphs [17] and provide the resulting probabilistic executable
semantics.

We use probabilistic bigraphs [18] that allow a (relative) weight to be assigned
to bigraph reaction rules and we extend the rules in Can specifying plan selec-
tion, intention selection, and probabilistic action outcomes (specified by the
user). For automated verification, we export a Discrete Time Markov Chain
(DTMC) from the bigraph model for analysis in probabilistic model check-
ers, e.g. PRISM [19]. We believe this is the first rigorous quantitative analy-
sis through formal modelling applied to plan selection, intention selection, and
action execution within mainstream BDI agents.

We make the following research contributions:

– a probabilistic extension of the semantics of Can language;
– an executable semantics of Can based on probabilistic bigraphs;
– an evaluation, in a smart manufacturing case, of probabilistic plan and inten-

tion selection under probabilistic action outcomes, against standard counter-
parts, e.g. ordered plan selection and round robin intention selection.

The paper is organised as follows. In Sect. 2 we provide a brief overview of
BDI agents and Bigraphs. In Sect. 3 we propose the probabilistic extension of
Can semantics. In Sect. 4 we evaluate our approach on a smart manufacturing
example. We discuss related work in Sect. 5 and conclude in Sect. 6.

2 Background

2.1 BDI Agents

A BDI agent has an explicit representation of beliefs, desires, and intentions.
The beliefs correspond to what the agent believes about the environment, while

Probabilistic BDI Agents: Actions, Plans, and Intentions 265

the desires are a set of external events that the agent can respond to. To respond
to those events, the agent selects a plan (given its beliefs) from the pre-defined
plan library and commits to the selected plan by turning it into a new intention.

The Can language formalises a classical BDI agent consisting of a belief
base B and a plan library Π. The belief base B is a set of formulas encoding the
current beliefs and has belief operators for entailment (i.e. B |= ϕ), and belief
atom addition (resp. deletion) B ∪ {b} (resp. B \ {b})1. A plan library Π is a
collection of plans of the form e : ϕ ← P with e the triggering event, ϕ the
context condition, and P the plan-body. The triggering event e specifies why the
plan is triggered, while the context condition ϕ determines when the plan-body
P is able to handle the event. Events can be either be external (i.e. from the
environment in which the agent is operating) or internal (i.e. sub-goals that the
agent itself tries to accomplish). The language used in the plan-body is defined
by the following grammar:

P = nil | + b | − b | act | ?ϕ | e | P1;P2 | P1 � P2 | P1 ‖ P2 |
e : (|ϕ1 : P1, · · · , ϕn : Pn|) | goal(ϕs,P , ϕf)

where nil is an empty program, +b and −b belief addition and deletion, act a
primitive action, ?ϕ a test for ϕ in the belief base, and e is a sub-event (i.e.
internal event). Actions act take the form act = ϕ ← 〈φ+, φ−〉, where ϕ is the
pre-condition, and φ+ and φ− are the addition and deletion sets (resp.) of belief
atoms, i.e. a belief base B is revised to be (B\φ−)∪φ+ when the action executes.
To execute a sub-event, a plan (corresponding to that event) is selected and the
plan-body added in place of the event. In this way we allow plans to be nested
(similar to sub-routine calls in other languages). In addition, there are composite
programs P1;P2 for sequence, P1 �P2 that executes P2 in the case that P1 fails,
and P1 ‖ P2 for interleaved concurrency. A set of relevant plans (those that
respond to the same event) is denoted by e : (|ψ1 : P1, · · · , ψn : Pn|). Finally, a
declarative goal program goal(ϕs,P , ϕf) expresses that the declarative goal ϕs

should be achieved through program P , failing if ϕf becomes true, and retrying
as long as neither ϕs nor ϕf is true (see in [3] for details).

The operational semantics for Can are defined over configurations C and
transitions C → C′. A transition C → C′ denotes a single execution step between
configuration C and C′. We write C → (resp. C �) to state that there is (resp. is
not) a C′ such that C → C′. A derivation rule consists of a (possibly empty) set
of premises pi (i = 1, . . . , n) on C, and a conclusion, denoted by

p1 p2 · · · pn

C → C′ l

where l is a rule name. We write C l−→ C′ to denote C evolves to C′ through the
application of derivation rule l.

A basic configuration 〈B, P 〉, where P is the plan-body program being exe-
cuted (i.e. the current intention), is used in rules that define the execution of
1 Any logic is allowed providing entailment is supported. A propositional logic with

natural number comparisons is used in our examples.

266 B. Archibald et al.

a single intention. The agent configuration is defined as 〈Ee,B, Γ 〉 where Ee

stands for the a set of pending external events and Γ the current set of inten-
tions (partially executed plan-body programs). The semantics of Can language
is specified by two types of transitions. The first transition type, denoted as →,
specifies intention-level evolution in terms of basic configuration 〈B, P 〉 and the
second type, denoted as ⇒, specifies agent-level evolution over the agent config-
uration 〈Ee,B, Γ 〉. For example, in the intention-level evolution, the transition
for belief addition and a belief test can be given as follows:

〈B,+b〉 → 〈B ∪ {b}, nil〉 + b
B |= ϕ

〈B, ?ϕ〉 → 〈B, nil〉 ?

We refer the reader to [2,20] for a full overview of the semantics of Can.

2.2 Bigraphs

Bigraphs are a graph-based universal modelling formalism, introduced by Mil-
ner [17], and extended to probabilistic systems [18]. As a graph-based rewriting
formalism, over rules called reaction rules, bigraphs not only provide an intuitive
diagrammatic representation, which is ideal for visualising the execution process
of the systems, but also offer compositional reasoning via explicit abstractions
(sites/regions/names), customised rewriting rules, and multiple ways to relate
entities (placement and linking). They have been used both for modelling ubiq-
uitous systems [21–23] and as a unifying theory of existing process calculi [24,25]
and their semantics.

The evolution of bigraphs is described through over a rewriting system spec-
ified via reaction rule l � r that replace a bigraph matching l with a bigraph
matching r in some larger bigraph2. Given an initial bigraph and set of reac-
tion rules we can derive a non-deterministic transition system capturing the
behaviour of the system. We have used this to encode the existing Can lan-
guage semantics in order to symbolically analyse BDI agent behaviour [16]. The
encoding defines a bigraph equivalent for any Can agent, and defines reaction
rules that faithfully model the operational semantics (essentially a tree explo-
ration).

Probabilistic bigraphs [18] allow reaction rules to be weighted, e.g. t1 =
l1

2 � r1 and t2 = l2
1 � r2, such that if both (and only) t1 and t2 are appli-

cable then t1 is twice as likely to apply as t2. In this case the transition system
generated is a DTMC that can be analysed by probabilistic model checker, e.g.
PRISM [19].

To execute (probabilistic) bigraphical reactive systems, we employ Bigra-
phER [26], an open-source language and toolkit for bigraphs. It also allows
exporting transitions systems, e.g. DTMCs, for analysis in specialised model
checking tools. To aid writing logical formulas over the transition systems, states
may be labelled using bigraph patterns that assign a state predicate label if it
contains (a match of) given bigraph patterns.
2 Similar to term rewriting lifted to graph structures.

Probabilistic BDI Agents: Actions, Plans, and Intentions 267

3 Probabilistic Extension of CAN Semantics

In this section we detail how action outcomes, plan selection, and intention
selection from Can can be extended to support probabilistic reasoning.

3.1 Probabilistic Action Outcomes

Agents execute actions that both interact with an external environment (e.g.
pick up an object), and in-turn revise the internal belief base (e.g. the agent
believes it holds the object). Action execution is specified in Can as:

act : ϕ ← 〈φ−, φ+〉 B � ϕ

〈B, act〉 → 〈(B \ φ− ∪ φ+), nil〉 act

This states that an action applies only if the precondition ϕ holds, and the
outcome is to update the belief base by adding and removing the atoms specified
by φ+ and φ−, respectively. Other than beliefs, the agent has no notion of the
environment and these are assumed to be side-effects.

In practice, we know the outcomes of an action are uncertain (e.g. due to
actuator malfunctions). For example, an agent may execute an action to pick up
an object but fail to do so because a robotic arm fails. In this case, updating the
beliefs that an object is held leads to misalignment between the true environment
and the agent’s representation of it. This form of uncertainty has been considered
extensively in the planning literature and has led to, e.g. probabilistic planning
domain definition languages (PPDDL) [27], that consider multiple outcomes with
associated probabilities (e.g. estimated from the historic data).

We follow a similar approach and sample action outcomes from a probability
distribution μ = [(φ−

1 , φ+
1) 	→ p1, . . . , (φ−

n , φ+
n) 	→ pn] with

∑n
i=1 pi = 1. That

is, we use actions in the form a : ϕ ← μ where the original action form is the
special case of μ being a delta distribution (single outcome with probability 1).
Defined using probabilistic transitions C →p C′ (i.e. move from C to C′ with
probability p) [28], we introduce a probabilistic action execution as follows:

act : ϕ ← μ μ(φ−, φ+) = p B � ϕ

〈B, act〉 →p 〈(B \ φ− ∪ φ+), nil〉 actp

Importantly we do not expect programming language implementations based
on these semantics to draw action outcomes probabilistically. Instead it is used
solely for modelling, allowing us to capture environmental effects in a semantics
where they are usually ignored.

3.2 Plan Selection and Its Probabilistic Extension

BDI agents employ a user-provided plan library to respond to events. Each plan
has i) a triggering event defining what event the plan can respond to, ii) a
precondition defining what beliefs must hold for the plan to apply, and iii) a
plan-body defining what steps should be taken to execute the plan. To address

268 B. Archibald et al.

a pending event (e.g. from the external environment), the agent retrieves a set
of relevant plans: those with a matching triggering event, captured as follows:

Δ = {ϕ : P | (e′ = ϕ ← P) ∈ Π ∧ e′ = e}
〈B, e〉 → 〈B, e : (| Δ |)〉 event

Given a set of relevant plans, the agent then selects an applicable plan (one where
the precondition is true) as specified by rule select:

ϕ : P ∈ Δ B |= ϕ

〈B, e : (| Δ |)〉 → 〈B, P � e : (| Δ \ {ϕ : P} |)〉 select

If there are no applicable plans a separate rule (unshown) propagates the failure.

Plan Selection Strategies
Notice that the preceding select rule does not specify which plan should be
selected in case of multiple applicable plans, i.e. it is non-deterministic.

However, in practice, we often want more control over which plan is chosen,
and different plans are likely to be more/less preferred based on domain-specific
characteristics, e.g. costs. Therefore, in many implementations the choice is often
made deterministically by a plan selection function of the following form:

δ : 2B × 2Π → Π ∪ {⊥}
where B is the belief base and Π the plan library. Given a belief base and a set
of (relevant) plans it returns an applicable plan or ⊥, i.e. no applicable plan.

While a common heuristic is to select the plan with the highest order based
on some characteristics (e.g. preference), it may not lead to globally optimal
behaviours due to action side-effects. We argue that it should be possible to
prioritise plan choice based on plan characteristics, but not assume a totally
fixed ordering in order to allow exploration of non-highest order plans that might
have better properties. This is akin to discrepancy search techniques [29] to go
against the heuristic, and is particularly useful for declarative goals to avoid
repeating the same plan obsessively.

To allow non-strict orderings we sample plans based on a probability distri-
bution, i.e. with the following plan selection function:

δp : 2B × 2Π → Dist(Π) ∪ {⊥}
where Dist(Π) is the set of discrete probability distribution over the plan library
and ⊥ stands for no applicable plan available. Using δp we can define a proba-
bilistic select rule as follows:

ϕ : P ∈ Δ δp(B,Δ) = μ μ
= ⊥ μ(ϕ : P) = p

〈B, e : (| Δ |)〉 →p 〈B, P � e : (| Δ \ {ϕ : P} |)〉 selectp

where μ is the probability distribution returned from δp such that any non-
relevant and non-applicable plans are being assigned the probability 0.

Trialling different distributions is possible by changing δp which could, for
example, be extracted from historic data through machine learning. With our
approach, it allows quantifying exact probabilistic effects of different δp choices.

Probabilistic BDI Agents: Actions, Plans, and Intentions 269

3.3 Intention Selection and Its Probabilistic Extension

BDI agents may pursue multiple intentions in parallel, allowing them to respond
quickly to new events whilst continuing to handle existing events. As parallelism
is interleaved (rather than simultaneous), at each step the agent must decide
which intention to progress. Similarly to plan selection, the default Can seman-
tics specifies a non-deterministic choice for intention selection in following two
cases:

P ∈ Γ 〈B, P 〉 → 〈B′, P ′〉
〈Ee,B, Γ 〉 ⇒ 〈Ee,B′, (Γ \ {P}) ∪ {P ′}〉 Astep

P ∈ Γ 〈B, P 〉 �

〈Ee,B, Γ 〉 ⇒ 〈Ee,B, Γ \ {P}〉Aupdate

That is, we can either select to progress any progressable intention (i.e. 〈B, P 〉 →
〈B′, P ′〉) or drop any unprogressable intention (i.e. 〈B, P 〉 �).

As expected, we also want more control over the order of intention execution
in practice. This is critical as the wrong choice can cause failure to one or more
events, for example, if deadlines are involved (real-time systems, e.g. in [30]).

Intention Selection Strategies
Many implementations provide a simple first-in-first-out strategy or round-robin
scheduling (which ensures a notion of fairness between the intentions). Alterna-
tively we may force a strict ordering on intentions based on the current situation,
e.g. deadlines. Similar to plan selection we can express (deterministic) intention
choice as a function which chooses the next intention to progress:

η = 2B × 2Γ → Γ ∪ {⊥}
where ⊥ stands for no active intentions available for selection.

Again we argue that forcing a deterministic choice is not always appropriate
and that you may require flexibility to choose from a distribution. We provide
the following function to allow intention selection based on a distribution:

ηp = 2B × 2Γ → Dist(Γ) ∪ {⊥}
where Dist(Γ) is the set of discrete probability distributions over Γ .

While the plan selection decides how to evolve a single intention (in terms
of intention-level configuration 〈B, P 〉), the intention selection determines what
it means to evolve an agent (in terms of agent-level configuration 〈Ee,B, Γ 〉).
As such, agent-level transitions depend on the intention-level transitions and we
need to account for this in the transition probabilities. To have a probabilistic
agent step, we assume, for a chosen progressable intention P ∈ Γ , 〈B, P 〉 →p′

〈B′, P ′〉 holds, for example, if a plan selection for the given intention P is required
based on selectP . For unprogressable intentions we have 〈B, P 〉 �1. We present
the following probabilistic intention selection rules:

P ∈ Γ ηp(B, Γ) = μ μ
= ⊥ μ(P) = p 〈B, P 〉 →p′ 〈B′, P ′〉
〈Ee,B, Γ 〉 ⇒p·p′ 〈Ee,B′, (Γ \ {P}) ∪ {P ′}〉 Ap

step

270 B. Archibald et al.

P ∈ Γ ηp(B, Γ) = μ μ
= ⊥ μ(P) = p′′ 〈B, P 〉 �1

〈Ee,B, Γ 〉 ⇒p′′ 〈Ee,B, Γ \ {P}〉 Ap
update

where
∑

p′′ p′′ +
∑

p,p′ p · p′ = 1 and p, p′, p′′ ∈ [0, 1]. Finally, other than the four
new probabilistic rules (actp, selectp, Ap

step, and Ap
update), the other Can rules

(unshown) all transition with uniform probability to future states.

3.4 Situation-Aware Distributions for Plan and Intention Selection

The plan and intention selection function δp and ηp are abstract and do not spec-
ify how to construct the resulting probability distributions in practice. In this
section we give a declarative mechanism for calculating situation-aware distri-
butions at run-time. In contrast, action outcomes are typically statically defined
based on estimates of environmental effects at design time.

Our approach is to specify a situation value function for plans and intentions
that assigns them a real-valued weight such that if wi < wj then we should
prefer the plan/intention with the weight wj . Specific probabilities are then
determined through normalisation. As intentions ultimately address external
events, we measure the situation value of an intention by considering the char-
acteristics of its related external event. As such, we adopt the notation of [15]
and extend it to external events by annotating both plans and external events,
namely e : ϕ ← P [θ] and e′[θ] where e is an event, ϕ the context condition, P
the plan-body, e′ ∈ Ee an external event, and θ a situation value description.
Importantly, each plan and external event can have a different situation value
description. Same as in [15], we define θ to be 〈d0, {(ϕ1, d1), · · · , (ϕn, dn)}, f〉
where d0 is the default value and values di are aggregated using function f (e.g.
to perform a sum) whenever B |= ϕi holds, di ∈ R≥0 (1 ≤ i ≤ n), and 0 ≤ n.
Details of the value description such as its expressivity and supported functions
can be found in [15].

4 Evaluation

We demonstrate, using a smart manufacturing example and existing probabilistic
model checking tools, how to quantitatively model BDI agent programs. Specif-
ically, we evaluate our probabilistic, situation-aware, plan/intention selection
against common strategies such as always selecting the most preferred plan. The
results are promising, with the intention completion probability using situation-
aware distributions being 97% higher than some strictly ordered plan and inten-
tion selection strategies. The models are freely available in BigraphER format
online3. For quantitative analysis we use PRISM by importing the DTMC pro-
duced by BigraphER. While we only give details of a single case study, users of
the executable semantics can employ BigraphER to “run” models with different
settings, e.g. external events, plan libraries, custom situation value descriptions.

3 https://bitbucket.org/uog-bigraph/prob bdi models sefm21/src/master/.

https://bitbucket.org/uog-bigraph/prob_bdi_models_sefm21/src/master/

Probabilistic BDI Agents: Actions, Plans, and Intentions 271

4.1 Smart Manufacturing Example

We consider a robotic packaging scenario, extended from [30], where a robot
packs products and moves them to a storage area. Products have specific tem-
peratures and must be packed in a suitable wrapping bag to prevent decay. If the
product stays on the production line too long, the temperature increases and it is
spoiled and lost. Given multiple waiting products the robot must choose which
to handle first (intention selection). Once chosen, the robot must then decide
which wrapping to use: either premium or standard (plan selection). Premium
wrapping is expensive but always stops product decay and never breaks. On the
other hand, standard wrapping is cheap, only works if the product temperature
remains low, and has a risk of breaking (a negative action outcome).

Complexity arises from the following factors: (1) losses avoided depend on
when a product is packed, (2) when a product is packed determines which wrap-
pings are applicable – earlier packing means cheaper bags, (3) cheaper wrappings
introduce uncertainty as they may break. A formal model of the agent system
allows us to quantitatively reason about the robot’s behaviours under this uncer-
tainty and use these results as evidence, e.g. for regulatory certification, or to
help improve the design of the robot, e.g. using a standard wrapping as often
possible but within tolerable failure threshold.

4.2 Agent Design

We consider a simplified scenario with two products that are initially present
on the production line, i.e. there are no dynamic events. Agent design is given
in Fig. 1 and we assume propositional logic with numerical comparisons.

Fig. 1. Agent design employing the syntax of Sect. 2.1 combined with the situation
value descriptions given in Sect. 3.4.

272 B. Archibald et al.

Products awaiting processing are captured by external events shown in lines
9 and 10, e.g. e product1 with its situation value description θ13 (explained
below). The agent responds to the events using a declarative goal on line 2 that
states it wants to achieve the state success1 (i.e. wrapped and moved) through
addressing the (internal) event e process product1; failing if failure1 (i.e.
dropped or decayed) ever becomes true. Two plans (in lines 3 and 4), which
represent the different wrappings, can handle the event e process product1
each with different situation value descriptions. Event e product2 is handled in
a similar way (in line 5–7).

There is a probabilistic outcome for the move product standard1 action,
such that it has a 10% chance of causing failure1 by dropping the prod-
uct accidentally, else it succeeds (adding success1 to the beliefs), whereas
move product premium1 action always succeeds. In Sect. 4.5 we will investigate
the effect with varying probability. To allow situational awareness, we encode
(discrete) temporal information, for progress and deadline, as agent belief atoms.
Progress determines how far (in terms of agent steps) an agent is through an
intention, while deadline determines how many steps we can make before the
product spoils. Mirroring implementations, we update beliefs based on timings in
the background, without executing an explicit action. In this case, the progress
increases whenever a specific intention is stepped, whereas deadline decreases
after a step of any intention.

Table 1 gives the specifications for quantitative reasoning. A short commen-
tary is as follows. deadline1 = 8 and deadline2 = 12 are the initial deadlines
of two external events, namly e product1 and e product2. The precondition
ϕ11 = deadline1 ≥ 3 indicates that deadline1 is greater than or equal to 3. The
situation value description θ11 = 〈1, {ϕ11, 1}, sum〉 indicates that if ϕ11 holds,
then θ11(ϕ11) = 1 + 1 = 2. The situation value description θ13 for the external
event e product1 is defined as a function (deadline1+progress1)−3. Intuitively,
if deadline1 + progress1 is smaller relative to other products, then it has been
progressed less and the deadline is approaching, so it is more urgent. Importantly,
the choice of situation value descriptions are made by the agent designer, i.e.
(deadline1 + progress1)−3 was their choice. Our approach enables the analysis
of alternative functions quantitatively, before deploying the agent.

Table 1. Quantitative specifications with x ∈ {1, 2}.

Initial deadlines Preconditions Situation value descriptions

deadline1 = 8 ϕx1 = deadlinex ≥ 3 θx1 = {1, {ϕx1, 1}, sum}
deadline2 = 12 ϕx2 = deadlinex ≥ 0 θx2 = {1, {ϕx3, 1}, sum}

ϕx3 = 3 ≥ deadlinex ≥ 0 θx3 = (deadlinex + progressx)−3

Probabilistic BDI Agents: Actions, Plans, and Intentions 273

Table 2. Plan and intention selection strategies.

Plan selection strategies Intention selection strategies

SMP: Select Most Preferred SMU: Select Most Urgent

PSD: Preference Situational Distribution FIFO: First-In-First-Out

RR: Round Robin

PUSD: Pure Urgency Situational Distribution

LUSD: Layered Urgency Situational Distribution

OLUSD: Optimised Layered Urgency Situational Distribution

4.3 Plan and Intention Selection Strategies

Table 2 lists the plan/intention selection strategies we analyse. We do not eval-
uate uniform random plans or intention selection strategies, as these do not
capture any domain specific information (e.g. regarding preferences). Whereas
SMP plan selection always selects the highest weighted plan, PSD selects a
plan by sampling distribution based on preference. For intention selection, SMU
always selects the intention closest to the deadline similar to SMP. FIFO and
RR are fixed orders where the former always selects the intention which arrives
first and the latter selects each intention in turn. PUSD selects an intention
by sampling from distribution where situation value description is given by
(deadline+progress)−3. Unlike PUSD, LUSD only deems an intention urgent
if the product is not packed or spoiled. As such, it will not select an intention in
which the product is packed when there is another intention whose product is not
packed. Finally, OLUSD selects an intention similarily to LUSD but the situa-
tion value description is revised to be |deadline+ progress− steps required|−3,
which accounts for the steps remaining to pack a product (to avoid spoilage).

4.4 Plan and Intention Selection Analysis

To perform quantitative analysis, we use BigraphER to generate a DTMC—
the underlying transition system of probabilistic bigraphs [18]—with bigraphs
as states and probabilities as transitions. Each state is labelled by bigraph pat-
terns [22]: if the pattern matches the current state then the predicate is true. In
our example, we reason about the dynamic properties using Probabilistic Com-
putation Tree Logic (PCTL) [31]. For example, the property P=?F[φ] expresses
the expected probability of φ holding eventually (in some state). We use S1, F1
(resp. S2, F2) to denote product 1 (resp. 2) successfully, or unsuccessfully being
processed by the robot. For model analysis we use these as state-labels4 in the
transition system for all states where a particular product succeeds/fails. Table 3
gives the probability of processing the products either successfully or with a fail-
ure, under the plan/intention selection strategies listed in Table 2. For example,
P=?F[S1 ∧ S2] is the probability both products being processed successfully.

4 Implemented using bigraph patterns, where a specific match is constructed that only
holds when that specific product was processed/failed.

274 B. Archibald et al.

Table 3 shows the necessity for good plan/intention selection, with the first
3 combinations never successfully processing both products, i.e. (S1, S2), and
PUSD having very limited success (p = 0.03). In particular, the intention strat-
egy of RR (which selects each intention in turn) is the worst, failing both prod-
ucts in all cases. Using PUSD has an almost 50% chance of succeeding with
product 1 or failing both. This indicates the weighting function is skewed toward
product 1 at the detriment of product 2, leading to the improved LUSD strat-
egy. This is a key advantage of our approach: discovering potential pitfalls and
trialling new strategies without changing the underlying agent programs and
semantics. Similar reasoning, that now product 2 was succeeding more often, led
to another strategy OLUSD being trialled with extremely good success rates,
i.e. p = 0.98. We should never expect the probability of (S1, S2) = 1 due to the
action outcome uncertainty (e.g. the wrapping bag breaks).

Table 3. Probability of product 1, product 2 for the properties, e.g. (S1, S2) with
different plan and intention selection strategies listed in Table 2.

Intention

SMU FIFO RR

P

l

a

n

S

M

P

(S1,S2)

0

(S1,F2)

0.9

(S1,S2)

0

(S1,F2)

0

(S1,S2)

0

(S1,F2)

0

(F1,S2)

0

(F1, F2)

0.1

(F1,S2)

0.9

(F1,F2)

0.1

(F1,S2)

0

(F1,F2)

1

P

S

D

(S1,S2)

0

(S1,F2)

0.93

(S1,S2)

0

(S1,F2)

0

(S1,S2)

0

(S1,F2)

0

(F1,S2)

0

(F1,F2)

0.07

(F1,S2)

0.93

(F1,F2)

0.07

(F1,S2)

0

(F1,F2)

1

PUSD LUSD OLUSD

P

l

a

n

S

M

P

(S1,S2)

0.03

(S1,F2)

0.48

(S1,S2)

0.510

(S1,F2)

0

(S1,S2)

0.97

(S1,F2)

0

(F1,S2)

0.08

(F1,F2)

0.41

(F1,S2)

0.482

(F1,F2)

0.008

(F1,S2)

0.037

(F1,F2)

0

P

S

D

(S1,S2)

0.03

(S1,F2)

0.49

(S1,S2)

0.513

(S1,F2)

0

(S1,S2)

0.98

(S1,F2)

0

(F1,S2)

0.08

(F1,F2)

0.4

(F1,S2)

0.481

(F1,F2)

0.05

(F1,S2)

0.02

(F1,F2)

0

In this example, we find that plan selection has limited effect compared
to intention selection, which is key to this application. This itself is a valu-
able insight. In general, probabilistic sampling that improves success rates, even
marginally, should be used as it can result in great savings—particularly in large
scale processes, e.g. an expected two-product successful behaviour tending to

Probabilistic BDI Agents: Actions, Plans, and Intentions 275

occur 98% of the time instead of 97%. Given the complexity of agent behaviours,
determining this expected probability precise, without such a model, would be
difficult.

Table 4. DTMC generation: final size and timing.

Strategies States Transitions Build time (s) Rule applications

(SMP, SMU) 31 30 66.57 217

(SMP, FIFO) 31 30 65.85 211

(SMP, RR) 19 18 52.13 143

(PSD, SMU) 36 36 92.26 273

(PSD, FIFO) 36 36 92.25 268

(PSD, RR) 19 18 51.72 143

(SMP, PUSD) 572 845 2447.37 5300

(SMP, LUSD) 323 478 1518.36 3116

(SMP, OLUSD) 323 478 1481.07 3116

(PSD, PUSD) 697 1039 17435.90 6836

(PSD, LUSD) 417 614 2106.64 4157

(PSD, OLUSD) 417 614 2098.51 4157

Table 4 details the DTMC that was used in the evaluation of each property:
the number of states and transitions, build time, and rule applications. The last
is the number of applications of reaction rules, including instantaneous reaction
rules—an advanced feature of BigraphER—that allows agents to progress an
intention without showing all sub-steps. For example, this includes belief revi-
sion, where we see only final output of a step of executing an action. As the
internal steps still have to be generated, much of the build time is spent doing
that—accounting for the low number of states, but large build time. We also have
to check all required rules and, as bigraphs do not natively support numerical
types, this includes many generated rules for different parameter values.

The build times for non-interleaved intention selection strategies, e.g. (SMP,
SMU) and (PSD, RR) is in the order of minutes whereas the build times for
interleaved selection strategies, e.g. (SMP, PUSD) and (PSD, PUSD), is sig-
nificantly higher (up to 5 h). This is expected due to the combinatorial nature
of interleavings and the large number of rules that need to be checked for appli-
cability in each state. Since our executable semantics is intended to be used at
design time we do not believe this to be an issue in practice. Model optimisations
may be possible, or statistical model checking used, for particularly large agent
designs, and ultimately there may be a numerical plug-in for BigraphER.

276 B. Archibald et al.

4.5 Action Outcome Analysis

The effects of different action outcomes are shown in Fig. 2 where the probability
of standard wrapping failing is increased from 10% to 90% for two strategy pairs:
(PSD, SMU) and (PSD, OLUSD).

We can see that negative action outcomes have a much larger effect on strictly
ordered intention selection (SMU), e.g. the probability of (S1,F2) decreases from
over 90% to below 40%. Meanwhile, (PSD, OLUSD) is more robust to action
outcome changes. For example, the probability of (S1, S2) in (PSD, OLUSD)
has a minor decrease of no more than 20%. This is due to increased interleaving of
these two intentions, rendering the standard wrapping inapplicable more often.

Fig. 2. Probability of reaching the end state (product 1, product 2) with increasing
failure probability in (PSD, SMU) and (PSD, OLUSD).

When the cases become less complex, e.g. there is only one product with
plenty time to process and all actions always succeed, the plan/intention choice of
a BDI agent becomes trivial. In another words, our approach is particularly useful
when situations are not straightforward and have complex domain information.
Future work, however, is required to account for the cost, in terms of wrapping
bags, of achieving different success rates and robustness to action outcomes while
keeping the overall cost low, i.e. multi-objective optimisation.

5 Related Work

We are not the first to consider probabilistic verification of BDI agents. The
work [32] uses a two-stage verification methods that first generates a model

Probabilistic BDI Agents: Actions, Plans, and Intentions 277

through program model checking (of a system implementation), and then con-
verts this model to PRISM input format for analysis. However, unlike our focus
on probabilistic extensions of the BDI semantics itself, the BDI agent used
in [32] does not contain any probabilistic aspects. Instead, the environment
where the agent executes enables the probabilistic reasoning. Similarly, the work
of [33] facilitates probabilistic verification of BDI agents by encoding them in
PRISM. In this case, instead of generating the model based on an implemen-
tation, they implement a significantly simplified version of AgentSpeak directly
in PRISM. The simplifications deviate from realistic BDI agents, e.g. enabling
truly-concurrent intentions (and no intention selection) and treating plan selec-
tion as non-deterministic. Our approach captures an extension of the full Can
semantics while still providing PRISM verification capabilities.

Works studying plan and intention selection strategies have also been con-
ducted within the BDI community. For example, the work of [30] compiles agent
programs to TÆMS (Task Analysis, Environment Modelling, and Simulation)
framework to represent the coordination aspects of problems such as “enables”
and “hinders” relations between tasks. A Design-To-Criteria scheduler is then
used for intention selection to determine the full set of decisions that the agent
needs to perform. An increasingly popular topic in the BDI community is inten-
tion progression [34], e.g. the contest5. The intention problem includes the means
(i.e. plan) to achieve a given event and which of the currently adopted plans (i.e.
intentions) to progress at the current moment, when handling multiple intentions
in parallel. Unlike our focus on automated quantitative analysis of BDI agents,
their goal (same as [30]) is to help the agent to make better decisions, by mod-
ifying or replacing the original BDI reasoning entirely, through other advanced
decision-making techniques such as automated planning techniques [35]. For
example, the work [36] showed that many of the intention progress issues can be
modelled in planning domain definition language (PDDL) [37] (the de-facto stan-
dard planning language) and resolved through suitable planners. such as modern
highly efficient (online) planner [38]. Finally, it is not a new idea to integrate
advanced decision-making techniques into BDI agents to improve performance.
There is a large amount of work (surveyed in [39]) to employ planning to dynam-
ically synthesise new plans to achieve an event even when no pre-defined plan
worked or exists. One work [40], for example, shows in detail how the integration
of planning and BDI can be done at the semantic level.

Besides BDI agents, quantitative verification techniques have also applied to
other types of agent systems. For example, the work of [41] considers uncertain
communication channels between systems of interacting agents. For verification
the multi-agent system is transformed to finite state Markov chains for estab-
lishing quantitative temporal properties of the system. Similar to our evaluation
of plan/intention selection strategies, the work of [42] provides a quantitative
assessment for a decentralised control policies in multi-vehicle scenarios. Specif-
ically they study conflict resolution policies to ensure that a policy never causes

5 https://sites.google.com/site/intentionprogression/home.

https://sites.google.com/site/intentionprogression/home

278 B. Archibald et al.

collisions under some mild assumptions on the initial conditions. For an overview
of general agent-based verification we refer to [43] for the interested readers.

6 Conclusions

A quantitative evaluation and comparison framework can aid design-time speci-
fication, allowing us to reason about rational agents operating under uncertainty,
for example due to uncertain environments or failure prone actuators, and inher-
ently quantifiable agent characteristics such as plan preference.

We have extended the Can language (which formalises the behaviour of a
classical BDI agent) to a probabilistic setting, which allows both probabilistic
action outcomes and probabilistic plan and intention selection. The extended
semantics employs probabilistic bigraphs, which enable quantitative analysis
with BigraphER and probabilistic model checking in PRISM. Importantly, our
executable framework allows (non-expert) users to experiment with their own
agent models without worrying about the underlying bigraph theory.

Through a smart manufacturing example we have shown that it is possible to
reason about several plan and intention selection strategies, and that probabilis-
tic plan and intention selection strategies can reduce the impact of undesirable
outcomes, compared with ordered or fixed strategies. In this example, we found
that plan selection has limited effect compared to intention selection, which is a
valuable insight. In particular, due to the agent making smarter intention selec-
tion choices, the impact of action outcomes can be marginal—even when the
failure probabilities are large.

Acknowledgements. This work is supported by the Engineering and Physical Sci-
ences Research Council, under PETRAS SRF grant MAGIC (EP/S035362/1) and S4:
Science of Sensor Systems Software. (EP/N007565/1).

References

1. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

2. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and proce-
dural goals in intelligent agent systems. In: the 8th International Conference on
Principles of Knowledge Representation and Reasoning. Morgan Kaufman (2002)

3. Sardina, S., Padgham, L.: A BDI agent programming language with failure han-
dling, declarative goals, and planning. Auton. Agents Multi-agent Syst. 23, 18–70
(2011). https://doi.org/10.1007/s10458-010-9130-9

4. Hindriks, K.V., Boer, F.S.D., Hoek, W.V.D., Meyer, J.J.C.: Agent programming
in 3APL. Auton. Agents Multi-agent Syst. 2(4), 357–401 (1999)

5. Dastani, M.: 2APL: a practical agent programming language. Auton. Agents Multi-
agent Syst. 16(3), 214–248 (2008). https://doi.org/10.1007/s10458-008-9036-y

https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/s10458-010-9130-9
https://doi.org/10.1007/s10458-008-9036-y

Probabilistic BDI Agents: Actions, Plans, and Intentions 279

6. Winikoff, M.: Jack intelligent agents: an industrial strength platform. In: Bordini,
R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Program-
ming. MSASSO, vol. 15, pp. 175–193. Springer, Boston (2005). https://doi.org/10.
1007/0-387-26350-0 7

7. Bordini, R.H., HüJomi, J.F., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak Using Jason, vol. 8. Wiley, Hoboken (2007)

8. Pokahr, A., Braubach, L., Jander, K.: The Jadex project: programming model.
In: Ganzha, M., Jain, L. (eds.) Multiagent Systems and Applications. Intelligent
Systems Reference Library, vol. 45, pp. 21–53. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-33323-1 2

9. Benfield, S.S., Hendrickson, J., Galanti, D.: Making a strong business case for
multiagent technology. In: the 5th International Joint Conference on Autonomous
Agents and Multiagent systems, pp. 10–15 ACM (2006)

10. Braubach, L., Pokahr, A.: Negotiation-based patient scheduling in hospitals. In:
Iantovics, B., Kountchev, R. (eds.) Advanced Intelligent Computational Technolo-
gies and Decision Support Systems. Studies in Computational Intelligence, vol. 486,
pp. 107–121. Springer, Cham. (2014). https://doi.org/10.1007/978-3-319-00467-
9 10

11. McArthur, S., et al.: Multi-agent systems for power engineering applications - part
I: concepts, approaches, and technical challenges. IEEE Trans. Power Syst. 22(4),
1743–1752 (2007)

12. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent pro-
grams by model checking. Auton. Agents Multiagent Syst. 12(2), 239–256 (2006).
https://doi.org/10.1007/s10458-006-5955-7

13. Dennis, L.A., Fisher, M., Lincoln, N.K., Lisitsa, A., Veres, S.M.: Practical verifica-
tion of decision-making in agent-based autonomous systems. Autom. Softw. Eng.
23(3), 305–359 (2014). https://doi.org/10.1007/s10515-014-0168-9

14. Chen, H.: Applications of cyber-physical system: a literature review. J. Ind. Integr.
Manage. 2(03), 1750012 (2017)

15. Padgham, L., Singh, D.: Situational preferences for BDI plans. In: the 2013 Interna-
tional Conference on Autonomous Agents and Multi-agent Systems, pp. 1013–1020
(2013)

16. Archibald, B., Calder, M., Sevegnani, M., Xu, M.: Modelling and verifying BDI
agents with bigraphs. arXiv preprint arXiv:2105.02578 (2021)

17. Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press, Cambridge (2009)

18. Archibald, B., Calder, M., Sevegnani, M.: Probablistic bigraphs. arXiv preprint
arXiv:2105.02559 (2021)

19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

20. Sardina, S., Padgham, L.: Goals in the context of BDI plan failure and planning.
In: the 6th International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 16–23 (2007)

21. Sevegnani, M., Kabác, M., Calder, M., McCann, J.A.: Modelling and verification
of large-scale sensor network infrastructures. In: 23rd International Conference on
Engineering of Complex Computer Systems, ICECCS, pp. 71–81 (2018)

22. Benford, S., Calder, M., Rodden, T., Sevegnani, M.: On lions, impala, and bigraphs:
modelling interactions in physical/virtual spaces. ACM Trans. Comput.-Hum.
Interact. (TOCHI) 23(2), 1–56 (2016)

https://doi.org/10.1007/0-387-26350-0_7
https://doi.org/10.1007/0-387-26350-0_7
https://doi.org/10.1007/978-3-642-33323-1_2
https://doi.org/10.1007/978-3-642-33323-1_2
https://doi.org/10.1007/978-3-319-00467-9_10
https://doi.org/10.1007/978-3-319-00467-9_10
https://doi.org/10.1007/s10458-006-5955-7
https://doi.org/10.1007/s10515-014-0168-9
http://arxiv.org/abs/2105.02578
http://arxiv.org/abs/2105.02559
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

280 B. Archibald et al.

23. Tsigkanos, C., Li, N., Jin, Z., Hu, Z., Ghezzi, C.: Scalable multiple-view analysis
of reactive systems via bidirectional model transformations. In: 35th IEEE/ACM
International Conference on Automated Software Engineering, pp. 993–1003 (2020)

24. Bundgaard, M., Sassone, V.: Typed polyadic pi-calculus in bigraphs. In: ACM
SIGPLAN International Conference on Principles and Practice of Declarative Pro-
gramming, pp. 1–12 (2006)

25. Sevegnani, M., Pereira, E.: Towards a bigraphical encoding of actors. In: Interna-
tional Workshop on Meta Models for Process Languages (2014)

26. Sevegnani, M., Calder, M.: BigraphER: rewriting and analysis engine for bigraphs.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016, Part II. LNCS, vol. 9780, pp.
494–501. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 27

27. Younes, H.L., Littman, M.L.: PPDDL1.0: An extension to PDDL for expressing
planning domains with probabilistic effects. Technical report CMU-CS-04-162 2,
99 (2004)

28. Di Pierro, A., Wiklicky, H.: An operational semantics for probabilistic concurrent
constraint programming. In: the 1998 International Conference on Computer Lan-
guages, pp. 174–183. IEEE (1998)

29. Prosser, P., Unsworth, C.: Limited discrepancy search revisited. J. Exp. Algorith-
mics (JEA) 16, 1–6 (2011)

30. Bordini, R.H., Bazzan, A.L.C., Jannone, R.D.O., Basso, D.M., Vicari, R.M.,
Lesser, V.R.: AgentSpeak (XL) efficient intention selection in BDI agents via
decision-theoretic task scheduling. In: the First International Joint Conference on
Autonomous Agents and Multiagent Systems: Part 3, pp. 1294–1302 (2002)

31. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994). https://doi.org/10.1007/BF01211866

32. Dennis, L.A., Fisher, M., Webster, M.: Two-stage agent program verification. J.
Logic Comput. 28(3), 499–523 (2018)

33. Izzo, P., Qu, H., Veres, S.M.: A stochastically verifiable autonomous control archi-
tecture with reasoning. In: IEEE Conference on Decision and Control, pp. 4985–
4991 (2016)

34. Logan, B., Thangarajah, J., Yorke-Smith, N.: Progressing intention progression: a
call for a goal-plan tree contest. In: AAMAS, pp. 768–772 (2017)

35. Geffner, H., Bonet, B.: A concise introduction to models and methods for auto-
mated planning. Synth. Lect. Artiif. Intell. Mach. Learn. 8(1), 1–141 (2013)

36. Xu, M., McAreavey, K., Bauters, K., Liu, W.: Intention interleaving via classical
replanning. In: 2019 IEEE 31st International Conference on Tools with Artificial
Intelligence (ICTAI), pp. 85–92 IEEE (2019)

37. McDermott, D., et al.: PDDL-the planning domain definition language. Technical
report (1998)

38. Keller, T., Eyerich, P.: Prost: probabilistic planning based on UCT. In: Twenty-
Second International Conference on Automated Planning and Scheduling (2012)

39. Meneguzzi, F., Silva, L.: Planning in BDI agents: a survey of the integration of
planning algorithms and agent reasoning. Knowl. Eng. Rev. 30, 1–44 (2015)

40. Xu, M., Bauters, K., McAreavey, K., Liu, W.: A formal approach to embedding
first-principles planning in BDI agent systems. In: Ciucci, D., Pasi, G., Vantaggi, B.
(eds.) SUM 2018. LNCS (LNAI), vol. 11142, pp. 333–347. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00461-3 23

41. Dekhtyar, M.I., Dikovsky, A.J., Valiev, M.K.: Temporal verification of probabilistic
multi-agent systems. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars
of Computer Science. LNCS, vol. 4800, pp. 256–265. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78127-1 14

https://doi.org/10.1007/978-3-319-41540-6_27
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/978-3-030-00461-3_23
https://doi.org/10.1007/978-3-540-78127-1_14

Probabilistic BDI Agents: Actions, Plans, and Intentions 281

42. Pallottino, L., Scordio, V.G., Frazzoli, E., Bicchi, A.: Probabilistic verification of a
decentralized policy for conflict resolution in multi-agent systems. In: IEEE Inter-
national Conference on Robotics and Automation, pp. 2448–2453 (2006)

43. Bakar, N.A., Selamat, A.: Agent systems verification: systematic literature review
and mapping. Appl. Intell. 48(5), 1251–1274 (2018). https://doi.org/10.1007/
s10489-017-1112-z

https://doi.org/10.1007/s10489-017-1112-z
https://doi.org/10.1007/s10489-017-1112-z

	Probabilistic BDI Agents: Actions, Plans, and Intentions
	1 Introduction
	2 Background
	2.1 BDI Agents
	2.2 Bigraphs

	3 Probabilistic Extension of CAN Semantics
	3.1 Probabilistic Action Outcomes
	3.2 Plan Selection and Its Probabilistic Extension
	3.3 Intention Selection and Its Probabilistic Extension
	3.4 Situation-Aware Distributions for Plan and Intention Selection

	4 Evaluation
	4.1 Smart Manufacturing Example
	4.2 Agent Design
	4.3 Plan and Intention Selection Strategies
	4.4 Plan and Intention Selection Analysis
	4.5 Action Outcome Analysis

	5 Related Work
	6 Conclusions
	References

