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Abstract. The BDI architecture, where agents are modelled based on
their beliefs, desires, and intentions, provides a practical approach to
developing intelligent agent systems. However, these systems either do
not include any capability for first-principles planning (FPP), or they
integrate FPP in a rigid and ad-hoc manner that does not define the
semantical behaviour. In this paper, we propose a novel operational
semantics for incorporating FPP as an intrinsic planning capability to
achieve goals in BDI agent systems. To achieve this, we introduce a
declarative goal intention to keep track of declarative goals used by
FPP and develop a detailed specification of the appropriate operational
behaviour when FPP is pursued, succeeded or failed, suspended, or
resumed in the BDI agent systems. Furthermore, we prove that BDI
agent systems and FPP are theoretically compatible for principled inte-
gration in both offline and online planning manner. The practical feasi-
bility of this integration is demonstrated, and we show that the resulting
agent framework combines the strengths of both BDI agent systems and
FPP, thus substantially improving the performance of BDI agent systems
when facing unforeseen situations.
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1 Introduction

A well-studied and widely applied architecture for developing intelligent agents
is the so-called Belief-Desire-Intention (BDI) paradigm. BDI builds a sound the-
oretical foundation to model an agent with an explicit representation of (B)eliefs,
(D)esires, and (I)ntentions. This BDI paradigm has inspired a multitude of agent-
oriented programming languages, such as AGENTSPEAK [1], CAN [2], and CAN-
PLAN [3]. Notable BDI agent software platforms include, for example, Jack [4],
Jason [5], and Jadex [6].

BDI agent systems are recognised for their efficiency and scalability in com-
plex application domains, such as control systems [7] and power engineering [8].
However, they have often avoided the use of first-principles planning (FPP) in
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favour of a pre-defined plan library. While the use of a set of pre-defined plans
simplifies the planning problem to an easier plan selection problem, obtaining
a plan library that can cope with every possible eventuality requires adequate
plan knowledge. This knowledge is not always available, particularly when deal-
ing with uncertainty. Therefore, this limits the applicability and autonomy of
BDI agent systems when there is no applicable plan for achieving a goal at
hand. FPP can, on the other hand, synthesise a new plan to achieve a goal for
which either no pre-defined plan worked or exists.
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Fig. 1. Layout of a smart house with a domestic robot

To illustrate the problem, consider the following running example (see Fig. 1).
In a smart home environment, there is an intelligent domestic robot whose job
includes daily household chores (e.g. sweeping), security monitoring (e.g. bur-
glary), and entertainment (e.g. playing music). The environment is dynamic and
pervaded by uncertainty. When the robot does chores in the lounge, it may not
be pre-encoded with plans to deal with an overturned clothes rack in the lounge,
one of the doors to the hall being blocked unexpectedly, or urgent water over-
flow in a bathroom. Indeed, it is unreasonable to expect an agent designer to
foresee all exogenous events and provide suitable pre-defined plans for all such
eventualities. To address this weakness, a robot agent should be able to make
use of FPP to generate novel plans to deal with such unforeseen events at design
time in order to act intelligently.

Fortunately, to alleviate (some of) these issues, a large body of work on
integrating various planning techniques with BDI have been proposed in recent
years, as reviewed in [9]. For example, the work of [10] proposed an integration
of AGENTSPEAK and a classical first-principles planner in which a new planning
action in AGENTSPEAK is introduced to incorporate this planner. The BDI agent
designer may include this new planning action at any point within a standard
AGENTSPEAK plan to call a planner. In the work of [11], the authors provide
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a formal framework for FPP in BDI agent systems. This framework employs
FPP to generate abstract plans, that is, plans that includes not only primitive
actions, but also abstract actions summarised from the plan library. It allows for
flexibility and robustness during the execution of these abstract plans. However,
none of these works have provided an operational semantics that defines the
behaviours of a BDI system with a built-in FPP. Moreover, the existing BDI
systems (e.g. [10-12]) that integrate with FPP require the agent designer to
define when the FPP is triggered. This limits the power and advantage of FPP
to assist BDI agent systems to effectively accomplish their goals as the points of
calling FPP can be unpredictable. Another important motivation of this paper
is to respond to the lack of work in strengthening the theoretical foundations of
the BDI agent pointed out by the comprehensive survey paper [9] as one of the
future directions for planning in BDI agents. Therefore, the goal of this paper
is to advance the state-of-art of planning in BDI agents by developing a rich
and detailed specification of the appropriate operational behaviour when FPP is
pursued, succeeded or failed, suspended, or resumed. In doing so, we introduce
a novel operational semantics for FPP in BDI agent systems. This semantics
specifies when and how FPP can be called, and articulates how a BDI agent
system executes the new plan generated by FPP. To the best of our knowledge,
we are not aware of any work on this problem so far.

The contributions of this paper are threefold. Firstly, we give a precise
account of FPP within a typical BDI agent programming language, namely CAN.
Secondly, the formal relationship between FPP and the BDI agent execution is
established. Finally, a scenario case study is presented to highlight the usefulness
and feasibility of the integration of FPP into BDI agent systems.

The remainder of the paper is organised as follows. In Sect. 2, we provide a
brief overview of BDI and FPP. Sections 3.1 and 3.2 present the full operational
semantics for integrating FPP into BDI. In Sect. 3.3, we establish the formal
relationship between FPP and the BDI execution. In Sect.4, the paper offers
an intricate scenario discussion, which supports the feasibility of the resulting
integrated framework and motivates the merits of the proposed framework to
warrant future work on a fully implemented system. Section 5 discusses related
work. Finally, in Sect. 6, we draw conclusions and outline future lines of research.

2 Preliminaries

CAN formalises the behaviours of a classical BDI agent, which is specified by a
5-tuple configuration C' = (B, I, A, A, I'). The belief base B is a set of formulas
encoding the current beliefs. The plan library IT is a collection of plan rules of
the form e : ¢ «— P with e the triggering event, ¢ the context condition, and
P the plan-body program. The language used in the plan-body program P is
defined by the following Backus-Naur grammar:
P:=mnil|act |70 | +b| —b|le| Pi;Py| Pr>Py| Py | Pol
(|’(/}1 s Py s Pn|) | goal(LpS,P,gof)
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with nil an empty program, act a primitive action, 7¢ a test for ¢ entailment
in the belief base, +b and —b respectively belief addition and deletion, and !e a
subgoal. In addition, we use Pi; Py for sequence, Py > Py to execute Py only on
failure of Py, and P; || Ps for interleaved concurrency. A set of relevant plans is
encoded by ([¢1 : P1,--- , ¢y : Py|). A goal program goal(ps, P, ¢y) states that
the declarative goal ¢ should be achieved through the procedural program P,
failing when ¢; becomes true and retrying (alternatives) as long as neither ¢
nor ¢y is true (see [13]). The action library A is a collection of actions act in
the form of a : 1 « ¢~ ;¢*. We have that v is the precondition, while ¢~ and
¢T denote respectively a delete and add set of belief atoms, i.e. propositional
atoms. The sequence of actions executed so far by an agent is denoted as A.
The intention base I' consists of a set of (partially) executed plans P. A basic
configuration (B, A, P)!, with the plan-body program P being executed (i.e. the
current intention), is also often used in notations to define what it means to
execute a single intention.

The operational semantics for a BDI agent are defined in terms of configu-
rations C and transitions C — C’. A transition C — C’ denotes that executing a
single step in configuration C yields C’. We write C — (resp. C —-) to state that
there is (resp. is not) a C’ such that C — C’, and - to denote the transitive
closure of —. A derivation rule specifies in which cases an agent can transition
to a new configuration. Such a rule consists of a (possibly empty) set of premises
p; and a single transition conclusion ¢, denoted by

pP1 D2 DPn I
c

where [ is a label for reference. We refer the reader to [2,13] for a full overview
of the semantics of CAN.

A FPP problem is defined as a 3-tuple P = (pg, B, A), where ¢, is a set
of successful goal states to be achieved, i.e. a set of formulas over some logical
language, B stands for a set of initial belief states, and A represents the action
library (defined as before). A first-principles planner takes as input the models
of all known actions (i.e. action library A), a description of the state of the world
(i.e. the initial state B), and some objective (i.e. goals ;). It returns a sequence
of actions o which solves P, denoted o = sol(P).

3 First-Principles Planning in BDI Agent Systems

We now discuss how CAN agent systems and first-principles planning (FPP)
can be integrated into a single framework. The resulting framework, called
CAN(FPP), allows us to define agents that can perform FPP to provide new
behaviours at runtime in an uncertain environment. We start by introducing the
concept of declarative goal intention (used by FPP) and its semantical operation

! The plan and action libraries IT and A are omitted under the assumption that
they are static entities, i.e. they remain unchanged as the agent moves between
configurations.
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in Sect. 3.1. The semantical behaviours of FPP within BDI execution presented
in Sect. 3.2 is subsequently underpinned by the formal relationship between FPP
and BDI execution in Sect. 3.3.

3.1 Declarative Goal Intention for First-Principles Planning

In a CAN agent, the intention set I is limited to just procedural goals. While
valuable, procedural goals only describe how to achieve a given goal and do not
answer the question as to which goals FPP should be trying to achieve in the BDI
agent. To address this shortcoming, we modify the intention in this work to be
a pair of sets, such that I" = (I, [4e) with I}, and 4. a set of procedural and
declarative goals, respectively. It allows us to keep track of both procedural goals
(executed by the BDI engine) and declarative goals that tells us what we want
to achieve (used by FPP). The set of declarative goals is furthermore partitioned
into the subset of active goals Fd+e, and the suspended goals I';_. As a (slight)
abuse of notation, we assume that adding an element to th ensures the element
is removed from I, and vice versa.

We start with the definition of a pure declarative goal and semantically enu-
merate three strategies, namely, direct, belief-driven, or recovery-aid strategy, to
add such a pure declarative goal into the declarative goal intention to plan for
by FPP.

A pure declarative goal goal(ps, ¢r) is obtained from the ordinary declarative
goal goal(ps, P,¢y¢) in CAN by dropping the procedural component P. It is read
as “achieve gg; failing if p; becomes true” and defined to be the element of the
declarative goal intention I;.. This new goal structure encodes the minimum
information of what FPP needs to achieve (i.e. successful state ;) and when it
is sensible to halt FPP (i.e. failure state o).

The first direct strategy is to add a pure declarative goal into declarative goal
intention when an ordinary declarative goal goal(ps, nil, @) is initially written
as a part of the plan-body program. Here, P = nil implies that there is no
available procedural information on how to achieve the goal. Such a scenario
occurs when either the procedural plan was not known during design time, or no
efforts were made to create pre-defined plans (e.g. due to the priority of other part
of plan library design tasks). Once the BDI agent selects goal goal(ps, nil, ¢y)
into procedural goal intention set I, (first premise), a pure declarative goal
PT = goal(yps, ¢y) is automatically added to I'y. by dropping nil if goal(yps, ¢r)
is not already in I'y. (second premise):

P = goal(ps, nil,of) € Tpre Pl ¢ Tye AL
oa oal
<BaHaAaA7F>q—l><BaH7A7A7<FpT‘\{P}7F;(;U{PT}>> !

The second belief-driven strategy is to allow adding a pure declarative goal
to Ije in a proactive manner through the motivational library M?. Inspired

2 We only explicitly mention M in the agent configuration of Aioal; for all other rules,
the library does not change and is omitted.
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by conditionalised goals [14], a motivation planning library M is, a collection
of rules of the form: ¢ ~~ goal(ps, nil, p5), to add a declarative goal based on
changes in beliefs. Semantically, we add a derivation rule for the motivational
library M so that a pure declarative goal is added to Iy, when the rule is
triggered (second premise), the goal has an empty procedural component (third
premise), and the goal goal(ps, @) is not already in Iye (fourth premise):

Y~ PeM BEy) P=goa(ps,nil,or) POE e

goal goal

(B, I, A, A, I") =— (B, II, A, A, (I'y; \ {P}, '}, U {P16}))

The third recovery-aid strategy is to overcome the limitations of the first and
second strategy by recovering the unexpected failure of procedural plan program.
It adopts goal(yps, ¢y) into I'ye when an ordinary declarative goal goal(¢s, P’, ¢f)
has a blocked procedural component, i.e. P’ # nil and (B, A, goal(ps, P', ¢y)) .
The failure handling mechanism in [13] is already capable of (partially) dealing
with such a situation. However, goals can still be blocked if failure handling
mechanism failed. Since one of the properties of declarative goals held by a
rational agent is that they should be persistent [2], it is rational to try and
pursue these blocked declarative goals using FPP. We have:

P = (P">P")Vnil (B, A, goal(ps, P, )+ Pl ¢ Iy

goal

<87H7A7A5F> - <B7H)A7A? <FP7‘\{goal(gosaPI)SOf)}’F;U{PT}>>

3
/4goal

where P! = goal(yps, ¢f).
Finally, when either ¢, or ¢y is true, the pure declarative goal goal(ps, s) has
been completed and it is dropped from I4:

G € Tye G = goal(ps,pr) Bl sV s
drop

<B,H,A,A,F> —_— <BaHaA7A7Fd6 \ {G}>

(;drop

3.2 First-Principles Planning for Declarative Goals

We now consider how to invoke FPP and how it integrates with the BDI system
and we use plan(goal(ps, pf)) to symbolise calling FPP.

The following two derivation rules G and Gy handle the cases where either
the success condition ¢, or the failure condition ¢y holds.

BE Ps a BE Qﬂf
(B, A, plan(goal(ps, ¢1))) — (B, A,nil) ~° (B, A, plan(goal(ps, ¢5))) — (B, A, ?false)

Gy

Intuitively, on success the plan is completed (replaced by nil). On failure, this is
signalled to the BDI agent so that the basic CAN semantics can take over again.
From now on, we will also distinguish between online planning [15] and offline
planning [16] and give different derivation rules for accommodating each style of
FPP due to their contrasting nature.
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In offline planning, a complete sequence of actions ¢ to solve FPP problem
(ps, B, A) is generated first and executed afterwards.
The derivation rule for offline planning is defined as follows:

P = plan(goal(ps, ¢r)) (B, A, P) — plan, bdis (B”,A”, nil)

(B, A,T) 2%,

where I' = (I, Tf, = {goal(ps, ¢p)}) and I' = (I:0{0}, Tue\{goal (s, ¢1)})-
It shows that the configuration (B, A, (I, I's. = {goal(¢s, ps)})) will evolve
o (B, A, (Ipr U{c}, I'ue \ {goal(ps,f)})) if FPP can generate a sequence of

actions o (i.e. (B, A, P> plan,

(i.e. (B, A, o) — L, (B", A", nil)). Once the successful state ¢, is met after the
execution of the sequence of actions o, the structure plan(goal(ys,¢s)) will
transition into nil and the goal goal(ys, ¢5) will be dropped from I'ge (i.e. g\
{goal(ps, vf)}) according to the above derivation rule G5 and G grop-

In online planning, a single action is returned based on current belief states
instead of generating the whole plan a priori, and executed immediately. The
next action will be generated based on newly reached belief states. The loop of
“plan one action—execute one action” will be iterated until the goal is reached.

The derivation rule for online planning is defined as follows:

(B',A',o) (B, A, o)
bdl <B, .A,F)

Foff

(B, A, o)) that can achieve the successful state ¢

P = plan(goal(ps,¢r)) (B, A, Py — plan, (B', A" act) actd = a
(B,A,T) ™ (B, A,T")

where I' = (I, Iif = {goal(a, o)} and I' = (I, U{L}, I, U{goal(ps. 7))
with I = act; actzvate(goal(g@s7apf)). The intention act; activate(goal(ps, vy))
pursues the action act which was returned from FPP. When the action act
is executed, it ensures that FPP is called again through reactivating the goal
goal(ps, ¢y). As such, FPP can take the new belief into consideration and plan for
the next action. These two interleaved planning and execution will be repeated
until the successful state is achieved if all possible.
The derivation rule to reactive the suspended goal is as follows:

Pron

Pe Fpr P = activate(goal(ps, ¢r))
(B, A, T) 2™ (B, A, (I}, \ {P}, T, U {goal(s,7)}))

In addition, a trivial goal can be safely terminated:

AT€

Pr

(B, A, pl(m(ml)} (B A, nil)

Finally, when no solution is found to achieve goal state y,, the BDI agent will
drop plan(goal(eps, ¢f)).

lan
P = plan(goal(¢s, ¢7)) (B, A P) /— (B, A, nil)
(B, A, P) 2 (B, A, ?false)

In Sect.4, we will explore how the scenario from the introduction can be
expressed using our CAN(FPP) framework.

P
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3.3 Formal Relationship Between FPP and BDI Execution

In this section, the relationship between FPP and the BDI execution is
formally established. The following theorem establishes the link between
plan(goal(ps,pr)) and FPP in both offline and online setting so that
plan(goal(ps, py)) can — to some extent — indeed be seen as FPP. In order
to distinguish between offline and online planning, we denote an offline solu-
tion for a FPP problem (yp,, B, A) as soloﬁ(gos,b’,/l) and an online solution as
s0l°™ (ps, B, A).

Theorem 1. For any agent,

(i) For offline planning, we have (B, A, plan(goal(ps, ¢5))) — L (B", A", nil)

— s0lP(p,,B,A) =0 #0, (B, A,o0) LLEN (B", A" nil) such that B" |=
¢s. The BDI agent can evolve plan(goal(ps, ¢r)) to an empty program as
long as offtine FPP returns a non-empty solution which can be successfully
executed to solve FPP problem (ps, B, A).

(i) For online planning, (B, A, plan(goal(ps, ¢r))) LN sol°™(ps, B, A) =
act # 0 and (B, A, act) L4, The BDI agent can evolve plan(goal(ps, ¢y))
to a next step as long as online FPP returns an executable action.

(iii) For online planning, (Bi,A, plan(goal(ps,¢f))) LLLN (B, A - act; -
acty,nily with k > 1 <= there exists a solution for each online stage
planning, i.e. sol°™(ps,B1,A) = acty, sol°™(ps,Ba, A) = acty, ---, and
sol°™(ps, B, A) = acty, such that (Bj, A-acty -...-actj_1,act; - ...-acty) Ddi,
forje{l,--- k} and By = ¢s. The BDI agent will successfully execute

(i.e. will make the success condition @s true) if the goal can be achieved
after the repetition of planning and execution.

Proof. The proof of (i) relies on the derivation rule Pgoy. In offline planning

setting, the transition (B, A, plan(goal(¢s, ¢f))) — Lt (B", A" nil) implies that
there exists a complete sequence of actions which is generated from FPP (i.e.
50l°% (., B,A) = ¢ # ) such that it can then be successfully executed (i.e.

(B, A, o)y —> b (B", A”,nil)) to achieve the goal state (i.e. B” = ¢s). Hence, the
right deduced from the left is proved. In order to prove from the right to the left,
let us start from the derivation rule Pr.g. Firstly, sol? (¢,, B, A) = o # () means
that (B, A, plan(goal(¢s, ¢5))) 2 (B, A’,0) holds. Taking into account of
that (B,A,0) — L (B", A" nil), the set of premises of the derivation rule
Prog is satisfied. Therefore, a single transition conclusion derivable from these
premises (i.e. (B, A (L, I, = {goal(ps,00)}) “ (B, A (L U {0}, Tue \
{goal(ws,s)}))) holds according to the derivation rule Pgoy. The final puz-
zle of the proof, i.e. (B, A, plan(goal(ps,pyr))) — LN (B", A" nil) is solved by

(B, A, o)y — b (B", A" nil) and B"” = ¢, again. Hence, the right implying the
left is proved. Therefore, (i) holds.

plan



A Formal Approach to Embedding First-Principles Planning 341

The proof of (ii) can be given similarly as (i) but depending on the rule Pron

instead. In online setting, the semantics (B, A, plan(goal(ps, ¢f))) 247, indicates
that a single action is returned (i.e. sol°(ps, B, A) = act # () and can be

executed (i.e. (B, A, act) M). According to the rule Pro, if an executable action
is produced by FPP, the configuration (B, A, plan(goal(¢s,¢y))) will transition
to (B, A, act). Hence (ii) holds.

The proof of (ii7) can be presented by induction on the planning step k. So

bdi
if k =1, then acty - ... - act, = 0. It means that (B, A, plan(goal(ps, ¢r))) /—
is true if sol®({(ys, So, AS)) = 0, which holds trivially. Therefore, (i) holds.
Next, suppose the claim holds for all numbers less than some k£ > 1. We show
that (i) holds for k. Since we have, by the hypothesis, that there exists a solu-

tion acty - acts - - - acty, such that (B, A - acty - ... - actj_1,act; - ... - acty) LN

for j € {2,---,k} and By = ¢ iff (Ba, A, plan(goal(ps, ¢r))) L, (Bg, A -

acty - acts - - - acty, nil). Clearly, we now only need to discuss the transition from
(B1, A, plan(goal(ps, ¢r))) to (Ba, A - acty, plan(goal(ps, ¢r))). If acty is a solu-
tion of FPP problem (pg, By, A) for achieving the goal, then the problem is
apparently solved already. Hence (74) holds. If not, taking into consideration
the hypothesis induction applying from 2 to k, (i) holds still. Therefore, by
induction, we have proved (). O

This theorem underpins the theoretical foundation that a successful exe-
cution resulting from our operational rules for plan(goal(ps,¢yf)) corresponds
directly to a sequence of actions from FPP. Concretely, (i) shows that if an
offline planning step is able to start executing, then there is one solution for this
FPP problem, provided there is no intervention from other concurrent intention
of the BDI agent and the external environment. Both (ii) and (i) unveil the
dynamic aspect related to the online management of the plans.

4 Feasibility Study

In this section, we demonstrate the practical feasibility of integrating a BDI
agent system with FPP. We show how the cleaning task scenario from the intro-
duction can be expressed using our CAN(FPP) framework. Without the loss of
generality and for the simplicity of discussions, we consider the offline FPP and
assume that the environment is dynamic (i.e. exogenous events can occur) and
deterministic (i.e. the effects of actions can be precisely predicted). We stress
though that the purpose of this discussion is not to present an actual fully
developed CAN(FPP) system, but rather to motivate the merits of the proposed
framework to warrant future work on a fully implemented system. Therefore, we
briefly discuss a prototype system which we designed to verify the feasibility of
our approach as a basis for this future work.

We recall that in a cleaning task scenario in Fig. 1, a robot finished cleaning
in the lounge, and needs to proceed to the hall to vacuum. There is a door
labelled as doorl connecting the lounge and the hall. The straight-forward
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1 // Initial beliefs

2

3 dirty(hall)

4  location(lounge)

5  open(doorl)

6  open(door2)

7  open(door3)

8 connect (doorl, lounge, hall)

9  connect(door2, lounge, backyard)
10 connect(door3, backyard, hall)
11

12 // Initial goals

13

14 !clean(hall)

15

16 // Plan library

17

18 +!clean(X) : dirty(X) & location(X) <- vacuum(X); ? not dirty(X)

19

20 +!clean(X) : dirty(X) & location(Y) & connect(D, Y, X) & open(D)<-
goal(at(X), move(D, Y, X), nil); 7 location(X); vacuum(X); ? not dirty(X)

Fig. 2. BDI agent in domestic cleaning scenario

route to the hall is to go through doorl when it is open. There are also two
doors, namely door2 and door3 which connect the backyard with the lounge
and the hall, respectively. The design of this robot has been shown by its belief
base, initial goal and plan library in Fig.2. The initial beliefs of the robot are
described on lines 3—10 and the initial goal to clean the hall is displayed on
line 14 of Fig.2. In this case, the achievement goal !clean(hall) is added to
the event set of the robot as an external event. At this point, two plans in the
plan library on lines 18-20 are stored as plans P; and P,, and BDI agent rea-
soning cycle begins. Both of plans P; and P, are relevant plans for the event
Iclean(hall). After validating and unifying the pre-condition given the current
belief base, plan P» (see line 20) is identified as an applicable plan and becomes
an intention in the procedural intention I3, adopted for the execution. The exe-
cution of the body of P, starts from the execution of an ordinary declarative
goal goal(at(hall), move(doorl,lounge,hall), nil) which purses action
move (doorl,lounge,hall) to achieve the successful state at (hall) with empty
failure state nil. However, it is realistic to expect in a real life setting that some
situation will block the execution of the robot (i.e. exogenous events can occur).
For example, in a scenario where the door1 was slammed shut unexpectedly (i.e.
-open(door1)) amidst the execution of the action move (doorl,lounge,hall).
As a consequence, the action of move(doorl,lounge,hall) would be undesir-
ably halted, thus eventually causing the failure of the whole cleaning task.

To address this problem, the derivation rule Agoal in Sect. 3.1 will elevate
the pure declarative goal goal(at(hall), nil) into the declarative intention
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I'ye with nil being no failure condition specified. Semantically, a FPP problem
P = (at(hall), BB, A) for plan(goal(at (hall), nil)) is to indicate that a first-
principles planner will be triggered to generate a sequence of actions from action
library A to achieve the successful state at(hall) in the initial belief state B5.
When a sequence of actions o is successfully generated in the offline fashion,
the configuration (B, A, plan(goal (at(hall), nil))) transitions to the config-
uration (B, A, o). It follows that the BDI agent starts to execute actions in o
in turn in order to reach a goal at(hall). The goal is achieved if and only
if (B, A,o) L, (B", A - o,nil) such that B” |= at(hall). In practice, the
BDI agent will need to pass along the successful state at(hall) it wants to
achieve, the current belief 3, and a set of action A to the first-principles plan-
ner when calling the planner. We choose an offline first-principles planner called
Fast-Forward planner® and employ the Planning Domain Definition Language
(PDDL) [17] for specifying planning problems for the first-principles planner in
this concrete example. Due to the syntactic knowledge difference, the transfor-
mation of knowledge (e.g. predicate, belief, and action)* between BDI and PDDL
is required to be conducted to generate PDDL planning problem specification
using our PDDL generator®. Afterward, the first-principles planner deliberates
and generates a plan solution if all possible. Finally, a sequence of actions is
returned from the planner to reach the successful state at (hall), denoted as o =
move (door2, lounge, backyard); move(door3, backyard, hall). It states
the robot can move to the backyard through the door2 first and proceed to the
hall through the door3. The route is depicted pictorially in Fig. 1.

This case study on the blocked plan-body program highlights a number of
key benefits offered by the CAN(FPP) systems. Compared to classical BDI agent,
we are able to improve the scalability of the BDI agent systems to tackle the
problems beyond their current reach (e.g. due to incomplete plans and dynamic
environment). Compared to a pure FPP, our formal framework ensures max-
imums reactiveness for most of the subgoals (tracked in the procedural goal
intention I},,) and only plans on-demand for the pure declarative goals in the
declarative goal intention [ .

5 Related Work

There have been various planning mechanisms studied in the context of BDI
agent systems.

Some researchers focus on the declarative notion of goals as a means to asso-
ciate FPP. This approach is appealing because a declarative goal gives a descrip-
tion of the desired state for FPP to achieve. One of the first works to look at
integrating FPP in a BDI agent system is the Propice-plan framework [18]. It is

3 https://fai.cs.uni-saarland.de/hoffmann /ff.html.

* Due to the lack of space, interested readers are referred to [17] for the full content.
We also omit the detailed discussion of the knowledge transformation between BDI
and PDDL as it is implementation-dependent.

5 https://github.com/kevinmcareavey /ppddl.
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the combination of the IPP planner [19] and an extended version of the PRS BDI
agent system [20]. In Propice-plan, planning occurs only (and always) when no
options are available for solving an achievement goal. Another early work is [21]
which combines FPP with the IndiGolog agent system [22]. The contribution of
[21] is to extend IndiGolog with a classical FPP via its achieve(G) component,
where G is a goal formula to achieve. Interestingly, they approached the integra-
tion from the direction of translating the planning language, namely ADL, into
Golog problem, contrary to our work. However, our approach is based on the
typical BDI agent systems while they explore the integration in non-BDI agent
architecture (i.e. situation calculus). Notable works on FPP in a BDI setting
[10,11] had been ad-hoc approaches without a formal operational semantics for
the integration of FPP in BDI. Another important work [23] studies the inte-
gration of an online risk-aware planner with a BDI agent. However, it is more
concerned with how to calculate risk alongside utility in online planning algo-
rithm instead of integrating online FPP with BDI agent systems in a semantics
fashion as we do in this work.

Meanwhile, some researchers tackle the problem from hierarchical task net-
work (HTN) planning perspective. It is revealed in [24] that there are many
similarities between HTN planning and BDI agent systems, hence, making them
suitable candidates for a principled integration. This principled integration is
the semantics of CANPLAN [13]. It is an extension of CAN with a built-in HTN
planning structure which performs a local offline plan search in the pre-defined
plan library. In some sense, our work is close to the spirit of CANPLAN which
provides strong theoretical underpinnings. However, this integration of the HTN
planning in CANPLAN functions as an advanced plan selection tool which cannot
generate new plans.

Some of the works approach the integration of automated planning in BDI
agent paradigms by examining the relationship between BDI agent systems and
probabilistic planning techniques. For example, [25,26] explore the relationships
between certain components of the BDI agent architectures and those in the
Markov Decision Processes (MDPs) and the Partially Observable Markov Deci-
sion Processes (POMDPs), respectively. More pragmatic approaches to the appli-
cation of probabilistic planning techniques in BDI agent systems can be found in
the works of [12,27]. Although the hybrid BDI and (PO)MDP frameworks pro-
vide good insights into the potential integration of probabilistic planning into
BDI agent architectures, there is still significant work to be done in modelling
and reasoning uncertainty in BDI paradigms beforehand.

6 Conclusions

In this work we proposed a framework with a strong theoretical underpinning for
integrating first-principles planning (FPP) within BDI agent systems based on
the intrinsic relationship between the two. We introduced a formal operational
semantics that incorporates FPP and that lends power to BDI agents when the
situation calls for it. We do this by extending the CAN language, and extending
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it with operational semantics to handle a tight integration with FPP. As such,
a BDI agent can accomplish the goals beyond its own pre-defined capabilities.
We have also established a theorem that the principled integration between
FPP and the BDI execution is the one intuitively expected both in offline and
online FPP style. We believe the work presented here lays a firm foundation
for augmenting the range of behaviours of the agents by expanding the set of
BDI plans available to the agent from FPP. More importantly, this paper is
a significant step towards incorporating different types of advanced planning
techniques into BDI agent systems in a principled manner. For future work, we
plan to advance the state-of-art of the hybrid planning BDI agents by proposing
a novel BDI plan library evolution architecture to improve the robustness of
the BDI agents which operates in a fast-changing environment. To achieve this,
we want to introduce the plan library expansion and contraction scheme. The
plan library expansion is to adopt new plans generated from the first-principles
planner for future reuse. The contraction scheme is accomplished by defining the
plan library contraction operator regarding the rationality postulates to remove
undesirable plans (e.g. obsolete or incorrect plans).
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