A Framework for Plan Library Evolution in BDI Agent Systems

Mengwei Xu, Kim Bauters, Kevin McAreavey, Weiru Liu

THE ALUMNI FOUNDATION

Extending BDI with FPP

Mengwei Xu, Kim Bauters, Kevin McAreavey, and Weiru Liu. **A Formal Approach to Embedding First-Principles Planning in BDI Agent Systems**. In *Proceedings of the 12th International Conference on Scalable Uncertainty Management (SUM'18)*, pages 333–347.

Extend existing BDI to account for incomplete plan library by synthesising new plans using FPP at runtime

Extending BDI with Evolving Plan Library

Programming-Based

Belief-Desire-Intention (BDI)

CAN-FPP

Model-Based

Hierarchical Task Networks (HTN)

First-Principles Planning (FPP)

Learning-Based

Reinforcement Learning

Reusable FPP plans

Expansion and contraction of plan library

- Plan Library Expansion
 - -- Syntactical and ad-hoc
- No works on Plan Library Contraction

BDI: Literature

Logics

[Cohen & Levesque, 1990]

[Rao & Georgeff, 1991]

[Shoham, 2009]

Programming Languages

AgentSpeak [Rao, 1996]

CAN [Winikoff et al., 2002]

CANPLAN [Sardina et al., 2011]

Conceptual Agent Notation

Extension of AgentSpeak that provides formal operational semantics

Software Platforms

Jason [Bordini et al., 2007]

Jack [Winikoff, 2005]

Jadex [Pokahr et al., 2013]

CAN: Agent (ℬ, Λ, Π)

Initial belief base /

Belief base specifying agent's initial beliefs

Belief base $\mathcal{B} \subseteq \mathcal{L}$

Set of formulas from logical language $\mathcal L$

 $\ensuremath{\mathcal{B}}$ must support:

- $\mathcal{B} \vDash \varphi$ (Entailment)
- $\mathcal{B} \cup \{\varphi\}$ (Addition)
- $\mathcal{B} \setminus \{\varphi\}$ (Deletion)

Assume \mathcal{B} is a set of atoms

CAN: Operational Mechanism Sketch

where $\boldsymbol{\mathcal{B}} \models \varphi_{j1}, j \in \{1, \cdots, n\}$

Our Plan Library Evolution Framework in BDI

- 1. Introduce Domain-independent Characteristics of a Plan Library
 - Activeness (i.e. how often plans are used)
 - *Success* (i.e. how well plans have performed)
 - Functionality (i.e. how many types of triggering events/goals it can respond to)
 - *Robustness* (i.e. how easy it is to replace a plan when it does not work)
- 2. Present Principle Definition of a Plan Library Evolution Framework
 - Postulates of a plan library *expansion operation*
 - Postulates of a plan library *contraction operator*
 - None-functionality and robustness decreasing *theorem to plan library expansion operator*
 - Set operation properties *theorem to plan library contraction operator*
- 3. Instantiate Plan Library Contraction Operator
 - Employ multi-criteria argumentation-based decision making
 - **Prove** such specific contraction operator satisfies the postulates

Measuring Performance of Plan

Relationships between Plans

 $e: \varphi_1 \leftarrow P_1$ Recall: \mathcal{P} is a set of plans and $e^P = e^{e} \cdot \varphi_3 \leftarrow P_3$ is a set of relevant plans to respond to triggering event e $e:\varphi_n \leftarrow P_n$

Relevancy: $\Upsilon_{\mathcal{P}}(P) = |e^P| - 1$

Replaceability: $\Gamma_{\mathcal{P}}(P) = |S \cdot P \triangleright_{mr} S|$

where $P \bowtie_r S = \{P_1, P_2, \cdots, P_n\}$ iff. 1. overlapping possible world $\mathcal{O}(P, P_1, P_2, \cdots, P_n) \neq 0$ 2. post-effects subsuming holds $post(P, P_1, P_2, \dots, P_n) \models post(P)$ where $P \bowtie_{mr} S = \{P_1, P_2, \cdots, P_n\}$ iff. 1. $P \triangleright_r S$ 2. $P \not \simeq_r S \setminus P'$ for $\forall P' \in S$

Summary Information for a Plan Library

Domain-independent Characteristics Orderings

- $\Pi \geq_{activeness} \Pi' \text{ iff } \Delta(\Pi, t_1, t_2) \geq \Delta(\Pi', t_1, t_2)$
- $\Pi \geq_{success} \Pi' \text{ iff } \Phi(\Pi, t_1, t_2) \geq \Phi(\Pi', t_1, t_2)$
- $\Pi \geq_{functionality} \Pi' \text{ iff } \mathcal{F}(\Pi) \geq \mathcal{F}(\Pi')$
- $\Pi \geq_{robustness} \Pi' \text{ iff } \nexists P \in \Pi \text{ s.t. } P \in \Pi', \Upsilon_{\Pi}(P) \leq \Upsilon_{\Pi'}(P), \Gamma_{\Pi}(P) \leq \Gamma_{\Pi'}(P)$

Plan Library Expansion

Plan Library Expansion Operator

Given a plan library Π and a plan P, $\Pi \circ P$ denotes the expansion of Π by P with \circ if and only if it satisfies the following postulates:

EO1 $\Pi \circ P$ is a plan libray. **EO2** $P \in \Pi \circ P$ and $\Pi \subseteq \Pi \circ P$. **EO3** if $P \in \Pi$, then $\Pi \circ P = \Pi$. **EO4** $(\Pi \circ P) \circ P' = (\Pi \circ P') \circ P$.

Proposition: $\Pi \circ \{P, P'\} = (\Pi \circ P) \circ P' = (\Pi \circ P') \circ P$

Plan Library Expansion

Plan Library Expansion Operator

Given a plan library Π and a plan P, $\Pi \circ P$ denotes the expansion of Π by P with \circ if and only if it satisfies the following postulates:

EO1 $\Pi \circ P$ is a plan libray. **EO2** $P \in \Pi \circ P$ and $\Pi \subseteq \Pi \circ P$. **EO3** if $P \in \Pi$, then $\Pi \circ P = \Pi$. **EO4** $(\Pi \circ P) \circ P' = (\Pi \circ P') \circ P$.

Proposition: $\Pi \circ \{P, P'\} = (\Pi \circ P) \circ P' = (\Pi \circ P') \circ P$

Union \cup

 $e: \varphi_{1} \leftarrow P_{1}$ $e: \varphi_{2} \leftarrow P_{2}$ $e: \varphi_{3} \leftarrow P_{3}$ \vdots $e: \varphi_{n} \leftarrow P_{n}$ \downarrow $P: \varphi_{1} \leftarrow P_{1}$ $e: \varphi_{2} \leftarrow P_{2}$ $e: \varphi_{3} \leftarrow P_{3}$ \vdots $e: \varphi_{n} \leftarrow P_{n}$ $e: \varphi' \leftarrow P'$

Plan Library Contraction Operator

Given a plan library Π , $\nabla(\Pi)$ denotes the contraction of Π by ∇ iff it satisfies the following postulates:

CO1 $\nabla(\Pi)$ is a plan libray. **CO2** $\nabla(\Pi) \subseteq \Pi$. **CO3** if $\mathcal{P} \subseteq \Pi \setminus \nabla(\Pi)$ and $\mathcal{P} \subseteq \Pi' \subseteq \Pi$, then $\mathcal{P} \subseteq \Pi' \setminus \nabla(\Pi')$. **CO4** $\nabla(\Pi) \geq \Pi$ where $\geq \in \{ \geq_{activeness}, \geq_{success} \}$. **CO5** $\forall P \in \Pi \setminus \nabla(\Pi)$, then $\Gamma_{\nabla(\Pi)}(P) > 0$.

Set Properties of contraction operator $\boldsymbol{\nabla}$

- 1. $\nabla(\Pi') \subseteq \nabla(\Pi)$ if $\Pi' \subseteq \Pi$.
- 2. $\nabla(\Pi \cap \Pi') \subseteq \nabla(\Pi) \cap \nabla(\Pi')$.
- 3. $\nabla(\Pi \setminus \Pi') \subseteq \nabla(\Pi) \setminus \nabla(\Pi')$.
- 4. $\nabla(\Pi \cup \Pi') \subseteq \nabla(\Pi) \cup \nabla(\Pi').$

ordered set inclusion intersection set inclusion difference set inclusion union set inclusion

Plan Library Contraction Operator

Given a plan library Π , $\nabla(\Pi)$ denotes the contraction of Π by ∇ iff it satisfies the following postulates:

CO1 $\nabla(\Pi)$ is a plan libray. **CO2** $\nabla(\Pi) \subseteq \Pi$. **CO3** if $\mathcal{P} \subseteq \Pi \setminus \nabla(\Pi)$ and $\mathcal{P} \subseteq \Pi' \subseteq \Pi$, then $\mathcal{P} \subseteq \Pi' \setminus \nabla(\Pi')$. **CO4** $\nabla(\Pi) \geq \Pi$ where $\geq \in \{ \geq_{activeness}, \geq_{success} \}$. **CO5** $\forall P \in \Pi \setminus \nabla(\Pi)$, then $\Gamma_{\nabla(\Pi)}(P) > 0$.

Set Properties of contraction operator $\boldsymbol{\nabla}$

- 1. $\nabla(\Pi') \subseteq \nabla(\Pi)$ if $\Pi' \subseteq \Pi$.
- 2. $\nabla(\Pi \cap \Pi') \subseteq \nabla(\Pi) \cap \nabla(\Pi')$.
- 3. $\nabla(\Pi \setminus \Pi') \subseteq \nabla(\Pi) \setminus \nabla(\Pi')$.
- 4. $\nabla(\Pi \cup \Pi') \subseteq \nabla(\Pi) \cup \nabla(\Pi').$

ordered set inclusion intersection set inclusion difference set inclusion union set inclusion Π

 $\Pi \setminus \nabla(\Pi)$

Plan Library Contraction Operator

Given a plan library Π , $\nabla(\Pi)$ denotes the contraction of Π by ∇ iff it satisfies the following postulates:

CO1 $\nabla(\Pi)$ is a plan libray. **CO2** $\nabla(\Pi) \subseteq \Pi$. **CO3** if $\mathcal{P} \subseteq \Pi \setminus \nabla(\Pi)$ and $\mathcal{P} \subseteq \Pi' \subseteq \Pi$, then $\mathcal{P} \subseteq \Pi' \setminus \nabla(\Pi')$. **CO4** $\nabla(\Pi) \geq \Pi$ where $\geq \in \{ \geq_{activeness}, \geq_{success} \}$. **CO5** $\forall P \in \Pi \setminus \nabla(\Pi)$, then $\Gamma_{\nabla(\Pi)}(P) > 0$.

Set Properties of contraction operator $\boldsymbol{\nabla}$

- 1. $\nabla(\Pi') \subseteq \nabla(\Pi)$ if $\Pi' \subseteq \Pi$.
- 2. $\nabla(\Pi \cap \Pi') \subseteq \nabla(\Pi) \cap \nabla(\Pi')$.
- 3. $\nabla(\Pi \setminus \Pi') \subseteq \nabla(\Pi) \setminus \nabla(\Pi')$.
- 4. $\nabla(\Pi \cup \Pi') \subseteq \nabla(\Pi) \cup \nabla(\Pi').$

ordered set inclusion intersection set inclusion difference set inclusion union set inclusion Π

 $\Pi \setminus \nabla(\Pi)$

 Π'

Plan Library Contraction Operator

Given a plan library Π , $\nabla(\Pi)$ denotes the contraction of Π by ∇ iff it satisfies the following postulates:

CO1 $\nabla(\Pi)$ is a plan libray. **CO2** $\nabla(\Pi) \subseteq \Pi$. **CO3** if $\mathcal{P} \subseteq \Pi \setminus \nabla(\Pi)$ and $\mathcal{P} \subseteq \Pi' \subseteq \Pi$, then $\mathcal{P} \subseteq \Pi' \setminus \nabla(\Pi')$. **CO4** $\nabla(\Pi) \geq \Pi$ where $\geq \in \{ \geq_{activeness}, \geq_{success} \}$. **CO5** $\forall P \in \Pi \setminus \nabla(\Pi)$, then $\Gamma_{\nabla(\Pi)}(P) > 0$.

Set Properties of contraction operator $\boldsymbol{\nabla}$

- 1. $\nabla(\Pi') \subseteq \nabla(\Pi)$ if $\Pi' \subseteq \Pi$.
- 2. $\nabla(\Pi \cap \Pi') \subseteq \nabla(\Pi) \cap \nabla(\Pi')$.
- 3. $\nabla(\Pi \setminus \Pi') \subseteq \nabla(\Pi) \setminus \nabla(\Pi')$.
- 4. $\nabla(\Pi \cup \Pi') \subseteq \nabla(\Pi) \cup \nabla(\Pi').$

ordered set inclusion intersection set inclusion difference set inclusion union set inclusion Π

 $\Pi \setminus \nabla(\Pi)$

 $\Pi' \setminus \nabla(\Pi')$

 Π'

Plan Library Contraction

Set Properties of contraction operator $\boldsymbol{\nabla}$

1. $\nabla(\Pi') \subseteq \nabla(\Pi)$ if $\Pi' \subseteq \Pi$. 2. $\nabla(\Pi \cap \Pi') \subseteq \nabla(\Pi) \cap \nabla(\Pi')$. 3. $\nabla(\Pi \setminus \Pi') \subseteq \nabla(\Pi) \setminus \nabla(\Pi')$. 4. $\nabla(\Pi \cup \Pi') \subseteq \nabla(\Pi) \cup \nabla(\Pi')$.

ordered set inclusion intersection set inclusion difference set inclusion union set inclusion

2. $\nabla(\Pi \cap \Pi') \subseteq \nabla(\Pi) \cap \nabla(\Pi')$

Plan Library Contraction

Set Properties of contraction operator $\boldsymbol{\nabla}$

1. $\nabla(\Pi') \subseteq \nabla(\Pi)$ if $\Pi' \subseteq \Pi$. 2. $\nabla(\Pi \cap \Pi') \subseteq \nabla(\Pi) \cap \nabla(\Pi')$. 3. $\nabla(\Pi \setminus \Pi') \subseteq \nabla(\Pi) \setminus \nabla(\Pi')$. 4. $\nabla(\Pi \cup \Pi') \subseteq \nabla(\Pi) \cup \nabla(\Pi')$.

ordered set inclusion intersection set inclusion difference set inclusion union set inclusion

2. $\nabla(\Pi \cap \Pi') \subseteq \nabla(\Pi) \cap \nabla(\Pi')$

Plan Library Contraction

Set Properties of contraction operator $\boldsymbol{\nabla}$

1. $\nabla(\Pi') \subseteq \nabla(\Pi)$ if $\Pi' \subseteq \Pi$. 2. $\nabla(\Pi \cap \Pi') \subseteq \nabla(\Pi) \cap \nabla(\Pi')$. 3. $\nabla(\Pi \setminus \Pi') \subseteq \nabla(\Pi) \setminus \nabla(\Pi')$. 4. $\nabla(\Pi \cup \Pi') \subseteq \nabla(\Pi) \cup \nabla(\Pi')$.

ordered set inclusion intersection set inclusion difference set inclusion union set inclusion

Practical Results: Instantiation of Contraction Operator V

Theoretical Results: Satisfiability of Contraction Operator ∇^{abm}

 $\nabla^{abm} = \Omega(\langle X, C, >_{\mathcal{C}}, \mathcal{R} \rangle)$ is indeed a contraction operator satisfying **CO1– CO5**

CO1 $\nabla(\Pi)$ is a plan libray.	HOLDS
CO2 ∇(Π) ⊆ Π.	HOLDS
CO3 if $\mathcal{P} \subseteq \Pi \setminus \nabla(\Pi)$ and $\mathcal{P} \subseteq \Pi' \subseteq \Pi$, then $\mathcal{P} \subseteq \Pi' \setminus \nabla(\Pi')$.	HOLDS
C04 $\nabla(\Pi) \ge \Pi$ where $\ge \in \{\ge_{activeness}, \ge_{success}\}$.	HOLDS
CO5 $\forall P \in \Pi \setminus \nabla(\Pi)$, then $\Gamma_{\nabla(\Pi)}(P) > 0$.	HOLDS

Summary:

- 1. One of the very first works which challenges the static nature of plan library in BDI agent system.
- 2. One of works which proposed clear domain-independent characteristics of the plan library and corresponding measures.
 - Useful for Agent Validation Development
 - Useful for Agent Programming Development
 - Useful for Agent Reasoning Development
- 3. A none-trivial combination of recent techniques (e.g. measuring literature and multi-criteria decision making) based on useful concepts in BDI.
- 4. The first work which suggests some desirable properties of plans to formalize plan library modifications in BDI agent systems.

Future Work:

Intention Progression In BDI Agent System: A Formal Approach (targeting AAMAS2019)

- 1. *Formalise* intention as decomposition-history graph
- 2. *Tackle* interleaved deliberation of concurrent intentions
- 3. *Propose* quantitative approach i.e. urgency of goals, preference of plans, awards of actions
- 4. *Manage* uncertainty arising from non-determinism (e.g. stochastic effects of actions)
- 5. *Support* anytime manner (i.e. online planning via Monte-Carlo Tree Search)

Questions?

Thank you