Intention Interleaving Via Classical Replanning

Mengwei Xu, Kim Bauters, Kevin McAreavey, Weiru Liu

Elic University of
BRISTOL

Extending Belief-Desire-Intention (BDI) Agents to
Managing Intention Interleaving

> Intention Resolution: to avoid negative interference

t Guarantee the achievability of intentions when interleaving the steps in different intentions

> Intention Merging: to facilitate positive interference

t Perform one task once for at least two goals, i.e. “kill two birds with one stone”

Motivation to Manage Intention Interleaving

Intention Resolution

Intentions

Interleaving outcomes

.

re-condltlon of P, :

B
Pl . = - " bl " b2
W-G-E-

PQZ

pre- condlt:on of P, : {P7

{p,q.n}

qé}

by

bo

initial beliefs: By = {p,q,n, s}

~

3
e |-
aj

J

.pre-condition: p

post-effect: ({p}, {u})

aj

_

by

pre-condition: S
post-effect: ({s},{r})

[

a

by

by

by

_’ _’._>
as asg

pre-condition: 72, U .pre-condition: q,c P = free RAM memory

post-effect: ({u}, {c})
as

pre-condition: @, 7" pre-condition: P, U
post-effect: ({¢}, {s.v}) post-effect: ({},{p,q}) 71

b3

post-effect: ({}. {p.q})

{ =free storage

U = pulsar signals

\ Careless interleaving could result in that

/
=

-

by bs

71 = NNE available
C = analysis complete

U = camera shots

S = camera sensor array available

= camera focused and reserved

neither of its intention can be completed.

Motivation to Manage Intention Interleaving

> Intention Merging

G1

TransmitSoilResults

o

e

EstablishConnection

N
e

EstablishConnection

TransmitimageResults

as

SendSoilResults

SendimageResults

Ay

execute them once for both intentions

BreakConnection

/

BreakConnection

Belief-Desire-Intention: Literature

Software Platforms

Logics Jason [Bordini et al., 2007]

[Cohen & Levesque, 1990] Jack [Winikoff, 2005]

[Rao & Georgeff, 1991] Jadex [Pokahr et al., 2013]

[Shoham, 2009] /

Programming Languages
AgentSpeak [Rao, 1996]
CAN [Winikoff et al., 2002]

CANPLAN [Sardina et al., 2011]

BDI Agent (B, A, 1)

\ Plan library

Initial belief base Set of plan rules
Belief base specifying agent’s initial beliefs

Action library
Set of STRIPS-style action descriptions

BDI Agent (B, A, IT)

Initial belief base

Belief base specifying agent’s initial beliefs

Belief base B € L

Set of formulas from logical language L

B must support:

* BE @ (Entailment)
* BU{p} (Addition)
* B\ {¢} (Deletion)

Assume B is a set of atoms

CAN: Agent (B, A, IT)

Action library

Set of STRIPS-style action descriptions

Action description act: ¢ « B~ ; B+

Set of ‘add” atoms Bt € £
Primitive action symbol

Precondition ¢ € L Set of “delete” atoms B~ € L

BDI Agent (B, A, I1)

\ Plan library

Set of plan rules

Head(P): G Context(P):p € L body(P): hy;-; hy,

Formula from L i
e.8. new goal e.g. a sequence of actions or goals

Planrule P=G:p <« hy;---; h,

BDI Operational Mechanism Sketch

G:gg <Py G
select G : Qo < P 2 select G :
GoalG ———— RelevantPlans G : @5 « P; ——» Applicable Plans G :
G:¢n < Py G
cII

\ repeat for the subgoals /

A tree structure representing all possible ways of achieving a goal ¢

@11 < P14
@1 < Pyy
@31 < Pz

P Pn1 < Png

where B F @j1,j € {1,

Our Intention Interleaving Framework in BDI

1. Intention Formalisation
* Model an intention as an AND/OR graph
* Define the execution trace for multiple intentions
* Define the conflict-free and maximal-merged execution trace for multiple intentions

2. Intention Interleaving Planning Preparation
* Indexing nodes
* Defined terminal, initial node sets, and progression links of intentions
* Computing overlapping programs between multiple intentions

3. Intention Interleaving Planning Formalism
* Formalise FPP problem of interleaving intentions
e Correctness Proof

4. Implementation

5. Evaluation

AND/OR Graphs for Intentions

Py = G111 < a5 03504 P, =Gy:p, < aq;a3; a4
T1 T2
O Ny OR-nodes
YN
. L\//\ 1 P2 OR-edges

AND-edges

1-"9: 3
» y » Y 4
OR-nodes

Execution Trace for An Intention

To identifies every unique way in which a given intention can be achieved

Execution trace for Ty:

11

7(Ty) = Gy; Psa15a;5 5 a4

Execution trace for T3: T1(T3) = G3; P3; ay; as
1) (Tg) — Gg; P4_; b4,; b5; b6

Execution Trace for Multiple Intentions

The construction of an execution trace of a set of intentions is to interleave elements in
the execution traces of different intentions

ON
e o - P3 - Py
miLa| g b3 b

R @ D
@

Potential execution trace for T; and T5: 0 = Gq; P1;G3; P3;aq; a4 ;a5 ;A4 ;a5

by interleaving T©(T;) = Gq; Py; a4 ;a, ; aq and t,(T3) = G3; P3; a4; as

Execution Trace for Intentions (Cont.)

Conflict-free Execution Trace:

To model the successful interleaving which achieves all intentions

T o[1] o[2] olj — 1] olj] olj +1] o[n]

T T T | T

B, B, B B, Bis1 B,

where B; is the belief base before the execution of the jt* element of an execution trace (i.e. o[j])

An execution trace o is conflict-free if and only if the following hold:
1. ifo[j] = P €11, then B; = context(P), i.e. the context of plan P must be met before selection

2. ifo[j] = a € A then B; = 1)(a), i.e. the pre-condition of action “a’ must be met before selection

Execution Trace for Intentions (Cont.)

Mergeable Execution Trace of {T'{,:-:, T,,}

To capture the overlapping programs of different intentions

o: o[l] o]2] alj] alj+1] - oalj+k—1] olj+ k] agn]

\ J
|

k consecutive same element from all difference intentions in o

!

o™: o[l] o][2] alj] olj+k+1] - oln]

An execution trace o is a mergeable execution trace if and only if the following hold:

1. 3je{l,---,n}suchthato|j| =0olj+ 1] = 0|j + k| where2 <k <n—j;

2. vle{l,---,m},As,t €{j,--+,j + k} where s # t such that g[s] € 7(T;) € g and g[t] € ©(T}) S o;
3. o™ is a conflict-free execution trace where ¢™ is the merged execution trace of o by reducing each

subsequence consisting of consecutive identical elements characterized by 1 and 2 in ¢ to only one
element left.

Execution Trace for Intentions (Cont.)

Maximal-merged Trace of {T'¢,:*, T}

To capture the most merged execution trace of multiple intentions

The merged execution trace ¢™ of a mergeable execution trace o of {Ty, :*+, T,,} is maximal-merged
if there is no another mergeable execution trace ¢’ of {Ty, :*+, T,,} such that |¢'™| < |6™| where

|o| stands for the length of o.

11 T:

2
OF Ny
U NA the potential maximal-merged trace of {T;, T, }
5 o1 ?2 E—
y

. o m
) —Gl,Pl,Gz,Pz,al,az,a3,a4
- P - Py

L g L / \
' - Perform action a; and a, once for both two goals T; and T,

Indexing Nodes

To ensure that e.g. the same actions in distinct plans is seen as different

A node n is a top-level goal of intention T': T(n)
The nodes of actions and subgoals of intention T: nP7Tto denote the j* member of body(P) in T
A plan node in intention T n’

Initial node set for intentions {Ty, -, T, }: zo = {T,(n), -, T,(N)}

Terminal node set for a goal node: a collection of the last element of each execution trace of a goal
zg = {tny, -, tn,, } where tn; is a terminal node of T;(77)

Terminal node set for intentions I = {Ty, -+, T,,,}

Zg ©¢n 1if Z4 is a terminal node set of [
H(Ty) - node G Py ai as as T T,
1) index T (ﬁ) P1T1 afl,l,Tl aé’l,?,Tl af1,3,T1 O
l l L L\//\ ®¥1 Y2
initial node terminal node LA
:"-.Pl i'~.,P2

4

node WGQ P2 al as [ay ,127 -...__.‘3 '12v """-43
T(TQ)'(mdew To(i) P* ap»t™ a7 afrh

Progression Links

To visualise the progression order of execution elements in the context of indexes

(T)) node G1 P ai a2 a4 T 13
T\L1) - | . _ T P;,1,T P1,2,T P1,3,T)
index Ti(n) P/' a7t a0t ottt Oy
l l .t Na
1nitial node terminal node IR N py

L L
7(12) ; (no i ; g affj,Tz agza,g,Tz Pzaé,Tz)

index To(R) Py2 a,

The progression links of execution trace 7(Ty) The progression links of execution trace 7(T7)

—) — — T
(T,(n) = P1T1) (T,(n) = P,?)
(Pt~ ay ™t (P, = a, P)
— > They are also called primitive progression links <
(a1P1,1,T1 - azPl,Z,Tl) (alpz,l,TZ - a3P2,2,T2)
(a2P1,2,T1 N a4P1,3,T1) 8 (a3P2,2,T2 N a4P2,3,T2)

Overlap Set of Multiple Intentions

To compute all potential overlapping programs among a set of intentions

The overlap set of {Ty, -+, T}, } is a set of tuples of the form ((idx,% — idxé), e (idx’b‘ — idxé‘)) if:

1. J(idx}) = - =](idxk) where J(idx}) represents the actual node of the ending index idx.;
2. Yle{l,-,m}As,t € {j,-,j + k}wheres # t s.t. (idxj — idx$) € 7(T)) and(idxj, — idxt) € ©(T));

The progression links of execution trace 7(T;) The progression links of execution trace 7(T,)
(Ty (@) > Py') (P, = a P11 (T, (7)) = P,'?) (P2 > a P21 T2)
(alpl,l,Tl — a2P1,2,T1) (a2P1,2,T1 — a4P1,3,T1) (alpz,l,Tz N a3P2,2,T2) (a3P2,2,T2 - a4P2,3,T2)

The overlap set of intention {Ty, T> } has two elements as follows:
2 (Pt = ayPrPT) (P2 = a2 1T2)) where J(a Pt = J(ag P21 T2) = ay;
2. ((aP?1 = a P13, (a3P2%"2 - a P23 712)) where J(a,37) = J(a,P2%72) = a,

Overlap Progression Links

Let an element of overlap set of {Ty, :*-, T}, } be ((idx,% — idxé), e (idx,’,‘ — idxé‘)).

Then we have a corresponding overlap progression link a® = ({idxg, T idx,’,‘} - {idx}, -, idx(’,f})

such that the side of a® is size(a®) = k — 1, i.e. merging k — 1 extra primitive progression links.
by fault, the size of a primitive progression link a? is size(a®) = 0, i.e. no merging at all.

The overlap set of intention {Ty, T, } has two elements as follows:
1. ((P1T1 — alpl’l’Tl) , (PZTZ — ale,l,Tz)) —> ({pllepsz} > {a,Pr1Ty ale,l,TZ})

2 ((a2P1,2,T1 - Cl4P1’3’T1) ’ (Cl3P2’2’T2 N Cl4P2’3’T2)) - ({azpl’z’Tl,a3P2'2’T2} N {a4P1'3'Tl,a4P2'3'T2})

Intention Interleaving Planning Formalism

A First-principles Planning (FPP) problem of interleaving intentions I = {Ty, -, T,,,} is a tuple

() = (Z,X, 0,50,5(;)

S = {zg|zg tn I} is the goal state
a finite set of (propositional) atoms where z; is the terminal node set of /
So = By U z is the initial state
where By is the initial belief base and z; is the initial node set of [
X = U;-"=1 T;(Ny U N,) is the set of node indexes of |

0 = 0P U 0° is a set of progression links
where 0P (resp. 09) is the collection of primitive (resp. overlap) progression links

Intention Interleaving Planning Formalism (Cont.)

A FPP problem of interleaving intentions I = {Ty, -+, T,;,} is a tuple

() = (Z,X, OJSOJSG>

0O=0PuUO0°
STRIPS PROGRESSION LINKS in which alP — (idx}; N idxé) e QP
link o pre(aP) del(aP) add(aP) . _ p p
(idzy, — PT) iday, U {ide,} {P"} prete’) = pre(ey) U U pre(cy)
< « del(a®) =del(al)U---udel(al)

(idxy, — a7 1) ddxy, U (a7 T) ¢~ U {ide} ¢T U {a?7T}
(idxy — GPITY iday, {idx} {GF3T} * add(a®) = add(ai) V- U add(ay)

Intention Interleaving Planning Formalism (Cont.)

A FPP problem of interleaving intentions I = {Ty, -, T,,,} is a tuple Q = (%, X, 0, 54, S¢;)

Definition 1: The result of applying a progression link @ € O to a state s = B U z is described
by the transition function f: 2% U 2¥x0 — 2% U 2% defined as follows:

(s\del(a)) Uadd(a) if sk pre(a)
undefined otherwise

0=

Definition 2: The result of applying a sequence of progression links to a state specification s is defined
inductively: Res(s,() =s

Res(s, (ag; **+; an) = Res(f (s, ay), {ay;; ay))
Definition 3: A sequence of progression links A= (a,; aq; -+ ; ay,) is a solution to a FPP problem Q) =

(%,X,0,s,,S:), denoted as A= sol(Q), iff Res(s,A) E S;. We also say that A is optimal if the sum of the
size of the progression link size(a;) is maximum wherei = 0, -+, n.

Theorem: we have a maximal-merged trace o™ of intention I = {Ty, -+, T,,,} if and only if there
exists an optimal solution A to ().

Intention Interleaving Planning Formalism (Cont.)

A FPP problem of interleaving intentions I = {Ty, -, T,,,} is a tuple Q = (%, X, 0, 54, S¢;)

Algorithm 1: Intention Interleaving Replanning) To adapt to the dynamic environment
Input: Planning problem Q2 = (X, X, O, 50, S¢g)

1 Q;...;an < sol(Q) /+ FPP solution */

2 14+ 0, < g, s < 3o /* initialisation =/

3 while s ¢ Y do

4 if f(s,a) = undefined then

S idxy < BEGINNING-INDEX(«v) line 5-7 instruct the procedures for failure
6 G < BACKTRACK (idxy) /* backtrack =/ backtracking and initial node state modification
7 sop < BUz\ {idep} U{G} /+ modify state =/

8 sol/(Q) «— FPP((2, X,0,s0,5¢)) /* replan =/

9 ao;...;an<—sol/((2)

10 a <+ ap,1 < 0 /* re—initialisation */

11 EXECUTE «

12 s f(s,a)

13 11+ 1

14 Q— Q41

Implementation

Operator Files primitive progression links: overlap progression links:

(containing progression links) (:action (idzy — PT) (caction ({idz},. .. idek} — {idzl,. .. idz*}))
:precondition (and idxp context(P)) :precondition (and pre(af)... ,pre(OtZ))
ceffect (and (not idzp) PT)) ceffect (and add(ad)...add(a})
(:action (idxp — afdT) (not del(af)) ... (not del(af))
:precondition (and idxy Y(afdT)) (increase (efficiency-utility) size(a®)))))

ceffect (and (not ¢—) ¢T (not idxpy) at3:T))

Planning Domain Definition Language (:action (idxy — GP3:T)

(PDDL) o .
:precondition idxy
:effect (and (not idxyp) GF3. Ty
.) , v XV BELIEF ATOM > declare all objects in the
Fact Files (:objects Vz € X, _ATOMS € X) — plan problem instance

(containing initial/goal state description)

(:init Bo, V1T €1, T(ﬁ)) e=mmmmm jnitial belief base and the top-level goals of intentions

. 1 1 m m ¢=mmmemm '€ach any terminal node
(:goal (apd (or t’@l tnkl) ... (or tni".. .tnkm)) of each intention

Evaluation: A Manufacturing Scenario

/ Operation 1 Operation2 Operation 3\

block 1 - twisting-drilling 10cm reaming boring
block 2 - twisting-drilling 15cm reaming boring
block 3 - twisting-drilling 20cm reaming boring
Q’Ck 4 - twisting-drilling 25cm reaming boring /
Details can be found in my github
EFFECTIVENESS ANALYSIS OF APPROACH https://github.com/Mengwei-Xu/manufacturing-evaluation

22 3.1 32 33 41 42 43 44
3% 11% 2% 33% 8% 17% 25% 33%
15% 30% 44% 11% 22% 33% 44%
25% 50% 17% <33%> 50% 13% 25% 38% 50%
53% 18% 36% 53% 13% 27% 40% 53%
28% 56% 19% 37% 56% 14% 28% 42% 56%
29% 57% 19% 38% 57% 14% 29% 43% 57%
29% 58% 19% 39% 58% 15% 29% 44% 58%

2.1

00 ~1 O UL W
\O]
2
N

https://github.com/Mengwei-Xu/manufacturing-evaluation

Summary:

Formalise an intention as AND/OR graph

Formalise the conflict-free execution trace of multiple intentions
Formalise the maximal-merged execution trace of multiple intentions
Define the concept of overlapping programs between different intentions

Both formally and practically compile the intention interleaving problem into a planning problem

SR L A

Provide a preliminary evaluation of a planning-centric intention interleaving problem

Future Work:

1. A complete algorithm of computing overlap set of intentions
2. Further test the costs and benefits of our approach empirically in a wider range of applications

3. Investigate the collaboration between multi-BDI agents, e.g. how to discover and exploit collaboration opportunities

