Intention Interleaving Via Classical Replanning

Mengwei Xu, Kim Bauters, Kevin McAreavey, Weiru Liu

Extending Belief-Desire-Intention (BDI) Agents to Managing Intention Interleaving

Intention Resolution: to avoid negative interference

Guarantee the achievability of intentions when interleaving the steps in different intentions

Intention Merging: to facilitate positive interference

Perform one task once for at least two goals, i.e. "kill two birds with one stone"

Motivation to Manage Intention Interleaving

Intention Resolution

Motivation to Manage Intention Interleaving

Belief-Desire-Intention: Literature

Logics

[Cohen & Levesque, 1990]

[Rao & Georgeff, 1991]

[Shoham, 2009]

Software Platforms

Jason [Bordini et al., 2007]

Jack [Winikoff, 2005]

Jadex [Pokahr et al., 2013]

Programming Languages

AgentSpeak [Rao, 1996]

CAN [Winikoff et al., 2002]

CANPLAN [Sardina et al., 2011]

BDI Agent (ℬ, Λ, Π)

Initial belief base

Belief base specifying agent's initial beliefs

Belief base $\mathcal{B} \subseteq \mathcal{L}$

Set of formulas from logical language $\mathcal L$

 ${\mathcal B}$ must support:

- $\mathcal{B} \models \varphi$ (Entailment)
- $\mathcal{B} \cup \{\varphi\}$ (Addition)
- $\mathcal{B} \setminus \{\varphi\}$ (Deletion)

Assume \mathcal{B} is a set of atoms

BDI Operational Mechanism Sketch

A tree structure representing all possible ways of achieving a goal G

Our Intention Interleaving Framework in BDI

- 1. Intention Formalisation
 - Model an intention as an AND/OR graph
 - Define the execution trace for multiple intentions
 - Define the conflict-free and maximal-merged execution trace for multiple intentions
- 2. Intention Interleaving Planning Preparation
 - Indexing nodes
 - Defined terminal, initial node sets, and progression links of intentions
 - Computing overlapping programs between multiple intentions
- 3. Intention Interleaving Planning Formalism
 - Formalise FPP problem of interleaving intentions
 - Correctness Proof
- 4. Implementation
- 5. Evaluation

AND/OR Graphs for Intentions

Execution Trace for An Intention

To identifies every unique way in which a given intention can be achieved

Execution Trace for Multiple Intentions

The construction of an execution trace of a set of intentions is to interleave elements in the execution traces of different intentions

Potential execution trace for T_1 and T_3 : $\sigma = G_1$; P_1 ; G_3 ; P_3 ; a_1 ; a_4 ; a_2 ; a_4 ; a_5

by interleaving $\tau(T_1) = G_1$; P_1 ; a_1 ; a_2 ; a_4 and $\tau_1(T_3) = G_3$; P_3 ; a_4 ; a_5

Execution Trace for Intentions (Cont.)

Conflict-free Execution Trace:

To model the successful interleaving which achieves all intentions

$$\sigma[1] \qquad \sigma[2] \qquad \cdots \qquad \sigma[j-1] \qquad \sigma[j] \qquad \sigma[j+1] \qquad \cdots \qquad \sigma[n]$$

$$B_1 \qquad B_2 \qquad B_{j-1} \qquad B_j \qquad B_{j+1} \qquad B_n$$
where B_j is the belief base before the execution of the j^{th} element of an execution trace (i.e. $\sigma[j]$)

An execution trace σ is conflict-free if and only if the following hold:

1. if $\sigma[j] = P \in \Pi$, then $\mathcal{B}_j \models context(P)$, i.e. the context of plan P must be met before selection 2. if $\sigma[j] = a \in \Lambda$, then $\mathcal{B}_j \models \psi(a)$, i.e. the pre-condition of action a' must be met before selection

Execution Trace for Intentions (Cont.)

Mergeable Execution Trace of $\{T_1, \cdots, T_m\}$

To capture the overlapping programs of different intentions

$$\boldsymbol{\sigma}: \quad \boldsymbol{\sigma}[1] \quad \boldsymbol{\sigma}[2] \qquad \cdots \qquad \boldsymbol{\sigma}[j] \quad \boldsymbol{\sigma}[j+1] \quad \cdots \quad \boldsymbol{\sigma}[j+k-1] \quad \boldsymbol{\sigma}[j+k] \qquad \cdots \qquad \boldsymbol{\sigma}[n]$$

$$k \text{ consecutive same element from all difference intentions in } \boldsymbol{\sigma}$$

$$\boldsymbol{\sigma}^{\boldsymbol{m}}: \quad \boldsymbol{\sigma}[1] \quad \boldsymbol{\sigma}[2] \qquad \cdots \qquad \boldsymbol{\sigma}[j] \qquad \boldsymbol{\sigma}[j+k+1] \cdots \qquad \boldsymbol{\sigma}[n]$$

An execution trace σ is a mergeable execution trace if and only if the following hold:

- 1. $\exists j \in \{1, \dots, n\}$ such that $\sigma[j] = \sigma[j+1] = \cdots \sigma[j+k]$ where $2 \le k \le n-j$;
- 2. $\forall l \in \{1, \dots, m\}, \nexists s, t \in \{j, \dots, j+k\}$ where $s \neq t$ such that $\sigma[s] \subseteq \tau(T_l) \subseteq \sigma$ and $\sigma[t] \subseteq \tau(T_l) \subseteq \sigma$;
- 3. σ^m is a conflict-free execution trace where σ^m is the merged execution trace of σ by reducing each subsequence consisting of consecutive identical elements characterized by 1 and 2 in σ to only one element left.

Execution Trace for Intentions (Cont.)

Maximal-merged Trace of $\{T_1, \cdots, T_m\}$

To capture the most merged execution trace of multiple intentions

The merged execution trace σ^m of a mergeable execution trace σ of $\{T_1, \dots, T_m\}$ is maximal-merged if there is no another mergeable execution trace σ' of $\{T_1, \dots, T_m\}$ such that $|\sigma'^m| < |\sigma^m|$ where $|\sigma|$ stands for the length of σ .

the potential maximal-merged trace of $\{T_1, T_2\}$

$$\sigma^m = G_1; P_1; G_2; P_2; a_1; a_2; a_3; a_4$$

Perform action a_1 and a_4 once for both two goals T_1 and T_2

Indexing Nodes

To ensure that e.g. the same actions in distinct plans is seen as different

 $T(\bar{n})$ A node *n* is a top-level goal of intention *T*: The nodes of actions and subgoals of intention T: $n^{P,j,T}$ to denote the j^{th} member of body(P) in T _____ A plan node in intention *T*: n^T Initial node set for intentions $\{T_1, \dots, T_m\}$: $Z_0 = \{T_1(\overline{n}), \dots, T_m(\overline{n})\}$ a collection of the last element of each execution trace of a goal Terminal node set for a goal node: Terminal node set for intentions I = { T_1, \dots, T_m } $\begin{bmatrix} z_g = \{tn_1, \dots, tn_m\} \text{ where } tn_i \text{ is a terminal node of } T_i(\bar{n}) \\ z_g \succ_{tn} I \text{ if } z_g \text{ is a terminal node set of } I \end{bmatrix}$ $\tau(T_1): \begin{pmatrix} node & G_1 & P_1 & a_1 & a_2 & a_4\\ index & T_1(\bar{n}) & P_1^{T_1} & a_1^{P_1,1,T_1} & a_2^{P_1,2,T_1} & a_4^{P_1,3,T_1} \\ \downarrow & & \downarrow & & \downarrow \end{pmatrix}$ $\bigcirc : N_{\vee} \\ : N_{\wedge} \\ \rightarrow : L_{\vee} \\ \vdots \\ \vdots \\ L_{\wedge}$ initial node terminal node $\tau(T_2): \begin{pmatrix} node & G_2 & P_2 & a_1 & a_3 & a_4 \\ index & T_2(\bar{n}) & P_2^{T_2} & a_{12}^{P_2,1,T_2} & a_{22}^{P_2,2,T_2} & a_{12}^{P_2,3,T_2} \end{pmatrix}$ a_4

Progression Links

To visualise the progression order of execution elements in the context of indexes

The progression links of execution trace $\tau(T_1)$

$$(T_{1}(\bar{n}) \rightarrow P_{1}^{T_{1}})$$

$$(P_{1}^{T_{1}} \rightarrow a_{1}^{P_{1},1,T_{1}})$$

$$(a_{1}^{P_{1},1,T_{1}} \rightarrow a_{2}^{P_{1},2,T_{1}})$$

$$(a_{2}^{P_{1},2,T_{1}} \rightarrow a_{4}^{P_{1},3,T_{1}})$$

They are also called primitive progression links

The progression links of execution trace $\tau(T_2)$

$$(T_{2}(\bar{n}) \rightarrow P_{2}^{T_{2}})$$

$$(P_{2}^{T_{2}} \rightarrow a_{1}^{P_{2},1,T_{2}})$$

$$(a_{1}^{P_{2},1,T_{2}} \rightarrow a_{3}^{P_{2},2,T_{2}})$$

$$(a_{3}^{P_{2},2,T_{2}} \rightarrow a_{4}^{P_{2},3,T_{2}})$$

Overlap Set of Multiple Intentions

To compute all potential overlapping programs among a set of intentions

The overlap set of $\{T_1, \dots, T_m\}$ is a set of tuples of the form $\langle (idx_b^1 \to idx_e^1), \dots, (idx_b^k \to idx_e^k) \rangle$ if: 1. $J(idx_e^1) = \dots = J(idx_e^k)$ where $J(idx_e^i)$ represents the actual node of the ending index idx_e^i ; 2. $\forall l \in \{1, \dots, m\}, \nexists s, t \in \{j, \dots, j+k\}$ where $s \neq t$ s.t. $(idx_b^s \to idx_e^s) \in \tau(T_l)$ and $(idx_b^t \to idx_e^t) \in \tau(T_l)$;

The progression links of execution trace $\tau(T_1)$ The progression links of execution trace $\tau(T_2)$ $(T_1(\bar{n}) \rightarrow P_1^{T_1})$ $(P_1^{T_1} \rightarrow a_1^{P_1,1,T_1})$ $(T_2(\bar{n}) \rightarrow P_2^{T_2})$ $(P_2^{T_2} \rightarrow a_1^{P_2,1,T_2})$ $(a_1^{P_1,1,T_1} \rightarrow a_2^{P_1,2,T_1})$ $(a_2^{P_1,2,T_1} \rightarrow a_4^{P_1,3,T_1})$ $(a_1^{P_2,1,T_2} \rightarrow a_3^{P_2,2,T_2})$ $(a_3^{P_2,2,T_2} \rightarrow a_4^{P_2,3,T_2})$

The overlap set of intention $\{T_1, T_2\}$ has two elements as follows: 1. $\langle (P_1^{T_1} \to a_1^{P_1, 1, T_1}), (P_2^{T_2} \to a_1^{P_2, 1, T_2}) \rangle$ where $J(a_1^{P_1, 1, T_1}) = J(a_1^{P_2, 1, T_2}) = a_1$; 2. $\langle (a_2^{P_1, 2, T_1} \to a_4^{P_1, 3, T_1}), (a_3^{P_2, 2, T_2} \to a_4^{P_2, 3, T_2}) \rangle$ where $J(a_4^{P_1, 3, T_1}) = J(a_4^{P_2, 3, T_2}) = a_4$

Overlap Progression Links

Let an element of overlap set of $\{T_1, \dots, T_m\}$ be $\langle (idx_b^1 \to idx_e^1), \dots, (idx_b^k \to idx_e^k) \rangle$.

Then we have a corresponding overlap progression link $\alpha^o = (\{idx_b^1, \dots, idx_b^k\} \rightarrow \{idx_e^1, \dots, idx_e^k\})$ such that the side of α^o is $size(\alpha^o) = k - 1$, i.e. merging k - 1 extra primitive progression links. by fault, the size of a primitive progression link α^p is $size(\alpha^o) = 0$, i.e. no merging at all.

The overlap set of intention $\{T_1, T_2\}$ has two elements as follows: 1. $\langle (P_1^{T_1} \rightarrow a_1^{P_1, 1, T_1}), (P_2^{T_2} \rightarrow a_1^{P_2, 1, T_2}) \rangle \longrightarrow (\{P_1^{T_1}, P_2^{T_2}\} \rightarrow \{a_1^{P_1, 1, T_1}, a_1^{P_2, 1, T_2}\})$ 2. $\langle (a_2^{P_1, 2, T_1} \rightarrow a_4^{P_1, 3, T_1}), (a_3^{P_2, 2, T_2} \rightarrow a_4^{P_2, 3, T_2}) \rangle \longrightarrow (\{a_2^{P_1, 2, T_1}, a_3^{P_2, 2, T_2}\} \rightarrow \{a_4^{P_1, 3, T_1}, a_4^{P_2, 3, T_2}\})$

Intention Interleaving Planning Formalism

A First-principles Planning (FPP) problem of interleaving intentions $I = \{T_1, \dots, T_m\}$ is a tuple

Intention Interleaving Planning Formalism (Cont.)

A FPP problem of interleaving intentions $I = \{T_1, \dots, T_m\}$ is a tuple

STRIPS PROGRESSION LINKS

link α^p	$pre(\alpha^p)$	$del(\alpha^p)$	$add(\alpha^p)$
$(idx_b \to P^T)$	$idx_b\cup\varphi$	$\{idx_b\}$	$\{P^T\}$
$(idx_b \to a^{P,j,T})$	$idx_b \cup \psi(a^{P,j,T})$	$\phi^- \cup \{idx\}$	$\phi^+ \cup \{a^{P,j,T}\}$
$(idx_b \to G^{P,j,T})$	idx_b	$\{idx\}$	$\{G^{P,j,T}\}$

 $\begin{aligned} \alpha^o &= \left(\left\{ idx_b^1, \cdots, idx_b^k \right\} \to \left\{ idx_e^1, \cdots, idx_e^k \right\} \right) \in O^o \\ \text{in which } \alpha_i^p &= \left(idx_b^i \to idx_e^i \right) \in O^p \end{aligned}$

•
$$pre(\alpha^o) = pre(\alpha_1^p) \cup \cdots \cup pre(\alpha_k^p)$$

•
$$del(\alpha^o) = del(\alpha_1^p) \cup \cdots \cup del(\alpha_k^p)$$

•
$$add(\alpha^{o}) = add(\alpha_{1}^{p}) \cup \cdots \cup add(\alpha_{k}^{p})$$

Intention Interleaving Planning Formalism (Cont.)

A FPP problem of interleaving intentions $I = \{T_1, \dots, T_m\}$ is a tuple $\Omega = \langle \Sigma, X, O, s_0, S_G \rangle$

Definition 1: The result of applying a progression link $\alpha \in O$ to a state $s = \mathcal{B} \cup z$ is described by the transition function $f: 2^{\Sigma} \cup 2^{X} \times O \rightarrow 2^{\Sigma} \cup 2^{X}$ defined as follows:

 $f(s,\alpha) = \begin{cases} (s \setminus del(\alpha)) \cup add(\alpha) & \text{if } s \vDash pre(\alpha) \\ undefined & otherwise \end{cases}$

Definition 2: The result of applying a sequence of progression links to a state specification s is defined inductively: $\operatorname{Res}(s, \langle \rangle = s$

$$\operatorname{Res}(\mathsf{s}, \langle \alpha_0; \cdots; \alpha_n \rangle = \operatorname{Res}(f(\mathsf{s}, \alpha_0), \langle \alpha_1; \cdots; \alpha_n \rangle)$$

Definition 3: A sequence of progression links $\Delta = \langle \alpha_0; \alpha_1; \cdots; \alpha_n \rangle$ is a solution to a FPP problem $\Omega = \langle \Sigma, X, O, s_0, S_G \rangle$, denoted as $\Delta = sol(\Omega)$, iff $\operatorname{Res}(s, \Delta) \models S_G$. We also say that Δ is optimal if the sum of the size of the progression link $size(\alpha_i)$ is maximum where $i = 0, \cdots, n$.

Theorem: we have a maximal-merged trace σ^m of intention $I = \{T_1, \dots, T_m\}$ if and only if there exists an optimal solution Δ to Ω .

Intention Interleaving Planning Formalism (Cont.)

A FPP problem of interleaving intentions $I = \{T_1, \dots, T_m\}$ is a tuple $\Omega = \langle \Sigma, X, O, s_0, S_G \rangle$

Implementation

Operator Files

(containing progression links)

Planning Domain Definition Language (PDDL)

primitive progression links:

```
\begin{array}{ll} (:\mbox{action } (idx_b \to P^T) & (i) \\ :\mbox{precondition } (\mbox{and } idx_b \ \ context(P) \ ) & : \\ :\mbox{effect } (\mbox{and } (\mbox{not } idx_b) \ P^T) \ ) & : \\ (:\mbox{action } (idx_b \to a^{P,j,T}) & : \\ :\mbox{precondition } (\mbox{and } idx_b \ \ \psi(a^{P,j,T}) \ ) & : \\ :\mbox{effect } (\mbox{and } (\mbox{not } \phi^-) \ \phi^+ \ (\mbox{not } idx_b) \ a^{P,j,T}) \ ) \\ (:\mbox{action } (idx_b \to G^{P,j,T}) & : \\ :\mbox{precondition } idx_b & : \\ :\mbox{effect } (\mbox{and } (\mbox{not } idx_b) \ G^{P,j,T}) \ ) \end{array}
```

overlap progression links:

 $\begin{array}{l} (\texttt{:action} \ (\{idx_b^1,\ldots,idx_b^k\} \rightarrow \{idx_e^1,\ldots,idx_e^k\})) \\ \texttt{:precondition} \ (\texttt{and} \ pre(\alpha_1^p)\ldots,pre(\alpha_k^p) \) \\ \texttt{:effect} \ (\texttt{and} \ add(\alpha_1^p)\ldots add(\alpha_k^p) \ \\ \ (\texttt{not} \ del(\alpha_1^p) \) \ \ldots \ (\texttt{not} \ del(\alpha_k^p) \) \\ \ (\texttt{increase} \ (\texttt{efficiency-utility}) \ size(\alpha^o))))) \end{array}$

Fact Files

(containing initial/goal state description)

Evaluation: A Manufacturing Scenario

EFFECTIVENESS ANALYSIS OF APPROACH

2.1	2.2	3.1	3.2	3.3	4.1	4.2	4.3	4.4
2 17%	33%	11%	22%	33%	8%	17%	25%	33%
3 22%	44%	15%	30%	44%	11%	22%	33%	44%
4 25%	50%	17%	33%	50%	13%	25%	38%	50%
$5 \ 27\%$	53%	18%	36%	53%	13%	27%	40%	53%
6 28%	56%	19%	37%	56%	14%	28%	42%	56%
7 29%	57%	19%	38%	57%	14%	29%	43%	57%
8 29%	58%	19%	39%	58%	15%	29%	44%	58%

Details can be found in my github

https://github.com/Mengwei-Xu/manufacturing-evaluation

Summary:

- 1. Formalise an intention as AND/OR graph
- 2. Formalise the conflict-free execution trace of multiple intentions
- 3. Formalise the maximal-merged execution trace of multiple intentions
- 4. Define the concept of overlapping programs between different intentions
- 5. Both formally and practically compile the intention interleaving problem into a planning problem
- 6. Provide a preliminary evaluation of a planning-centric intention interleaving problem

Future Work:

1. A complete algorithm of computing overlap set of intentions

- 2. Further test the costs and benefits of our approach empirically in a wider range of applications
- 3. Investigate the collaboration between multi-BDI agents, e.g. how to discover and exploit collaboration opportunities