
A Formal Approach to Embedding
First-Principles Planning

in BDI Agent Systems
Mengwei Xu, Kim Bauters, Kevin McAreavey, Weiru Liu

Agent Frameworks

Belief-Desire-Intention (BDI)

Programming-Based

First-Principles Planning (FPP)

Hierarchical Task Networks (HTN)

Reinforcement Learning

Model-Based

Learning-Based
Plan library
Pros: designer intent, scalability

Cons: unforeseen situations

Synthesise new plans
Pros: robust, dynamic environments

Cons: expensive

Extending BDI with FPP

Belief-Desire-Intention (BDI)

Programming-Based

Reinforcement Learning

Model-Based

Learning-Based

BDI+FFP

BDI with FPP
Extend existing BDI framework to account for incomplete
plan library by synthesising new plans using FPP

Some existing proposals but…
• Programmer must decide when to call FPP
• Typically informal [Meneguzzi & de Silva, 2015]

First-Principles Planning (FPP)

Hierarchical Task Networks (HTN)

BDI: Literature

AgentSpeak [Rao, 1996]

CAN [Winikoff et al., 2002]

CANPLAN [Sardina et al., 2011]

Jason [Bordini et al., 2007]

Jack [Winikoff, 2005]

Jadex [Pokahr et al., 2013]

Programming Languages

Software Platforms
Logics

[Cohen & Levesque, 1990]

[Rao & Georgeff, 1991]

[Shoham, 2009]

Conceptual Agent Notation
Extension of AgentSpeak that provides
formal operational semantics

Our framework = CAN-FPP
Formal integration of CAN and FPP with
operational semantics

CAN: Agent ℬ, Λ, Π

Initial belief base
Belief base specifying agent’s initial beliefs

Action description library
Set of STRIPS-style action descriptions

Plan library
Set of plan rules

CAN: Agent ℬ, Λ, Π

Belief base ℬ ⊆ ℒ
Set of formulas from logical language ℒ

ℬ must support:
• ℬ ⊨ ((Entailment)
• ℬ ∪ ((Addition)
• ℬ ∖ ((Deletion)

Assume ℬ is a set of atoms

Initial belief base
Belief base specifying agent’s initial beliefs

CAN: Agent ℬ, Λ, Π

Action description act ∶) ← ℬ+ ; ℬ-

Primitive action symbol

Precondition) ∈ ℒ Set of “delete” atoms ℬ+ ⊆ ℒ

Set of “add” atoms ℬ- ⊆ ℒ

Action description library
Set of STRIPS-style action descriptions

CAN: Agent ℬ, Λ, Π

Body (program) % ∷= nil act ? / +1 − 1 ! 4 %5 ; %7 %5 ⊳ %7 %5 ∥ %7 /5 ∶ %5, … , /< ∶ %< goal /?, %, /@

Plan rule 4 ∶ / ← %

Empty program

Triggering event 4
e.g. belief update, new (sub)goal

Context / ∈ ℒ
Formula from ℒ

Primitive action

Entailment

Belief addition

Belief deletion

New (sub)goal

Sequencing

Conditional

Concurrency

Relevant plans

CAN declarative goal

Plan library
Set of plan rules

CAN: Operational Semantics

Basic configuration ℬ, Λ, Π,%, &

Agent configuration ℬ, Λ, Π,%, Γ

Execution history % = act,, act-, … , act/
Sequence of primitive actions executed so far

Current intention
Remainder of a plan body to execute

Current intention set
Set of (partially executed) plan bodies

Current belief base
Belief base specifying agent’s current beliefs

Static entities that will be omitted

CAN: Operational Semantics (Cont.)

Transition ! ⟶ !′
Transition between (basic or agent) configurations

Derivation Rule $% $& … $(
) *

Specifies when/how an agent transitions to new configuration

ℬ,-,+/ ⟶ ℬ ∪ / ,-, nil + /

4 ∶ 6 ← ℬ8 ; ℬ: ∈ Λ 4= = act ℬ ⊨ 6=
ℬ,-, act ⟶ ℬ ∖ ℬ8= ∪ ℬ:=,- D act, nil act

Substitution 6=
Substitution of variables in 6 with values from unifier =

Our Framework: CAN-FPP

1. Adds notion of “pure” declarative goals, in addition to “CAN” declarative goals
• “Active” vs. “inactive” pure declarative goals
• ”Procedural” vs. “declarative” intention sets

2. Adds instrinsic support for automatic calls to FPP
• Direct call (i.e. programmer specified)
• Belief-driven call (via motivation library)
• Recover-aid call (i.e. following plan failure)

3. Extends operational semantics
• Adopting pure declarative goals
• Planning for pure declarative goals
• Managing (dropping, reactivating) pure declarative goals

FPP Problem Λ, ℬ, $%

Goal
Formula from $% ∈ ℒ

Initial state
Set of atoms ℬ ⊆ ℒ

Action description library
Set of STRIPS-style action descriptions

Offline solution sol,-- Λ, ℬ, $% = act2 ; act4 ; … ; act6
Sequence of actions from Λ that is guaranteed to reach state ℬ′ from ℬ such that ℬ′ ⊨ $%

Online solution sol,6 Λ, ℬ, $% = act2
Next best action from Λ so as to reach state ℬ′ from ℬ′ such that ℬ ⊨ $%

Assumes classical planning

Could be extended to e.g.
conformant planning

CAN-FPP: Agent ℬ,Π, Λ,ℳ

Motivation library
Set of motivation rules [à la van Riemsdijk, 2004]

Extended body (program) &' ∷= & | goal /0, /1 | activate goal /0, /1

Extended plan library
Set of extended plan rules

Extended plan rule 7 ∶ / ← &′
Motivation rule / ⇝ goal /0, /1

Triggering condition / ∈ ℒ Pure declarative goal

Pure declarative goal Reactivation program

CAN-FPP: Agent Configuration ℬ,Π, Λ,ℳ,&, Γ

Extended intention set Γ = Γ)* ∪ Γ,-. ∪ Γ,-/

Procedural intention set Γ)*
Standard CAN intention set

Active declarative intention set Γ,-.
Set of “active” pure declarative goals

Inactive declarative intention set Γ,-/
Set of “inactive” pure declarative goals

Declarative intention set Γ,- = Γ,-. ∪ Γ,-/
Set of all pure declarative goals

Motivation library ℳ is a static entity and will be omitted

Γ)* ∩ Γ,-. ∪ Γ,-/ = ∅

Γ,-. ∩ Γ,-/ = ∅

CAN-FPP: Adopting Pure Declarative Goals

! ∈ Γ$% ! = goal +,, nil, +0 !↑ = goal +,, +0
ℬ,3, 4 5678 ℬ,3, Γ$% ∖ ! , Γ:;< ∪ !↑

>5678?

+ ⇝ !↑ ∈ ℳ ℬ ⊨ +C !↑ = goal +,, +0
ℬ,3, 4 5678 ℬ,3, Γ:;< ∪ !↑C

>5678D

! ∈ Γ$% ! = goal +,, !′, +0 ℬ ⊨ +0 !↑ = goal +,, +0
ℬ,3, 4 5678 ℬ,3, Γ$% ∖ ! , Γ:;< ∪ !↑

>5678F

Direct
Translate a CAN declarative goal to a pure
declarative goal if it has no procedure

Belief-driven
Trigger a motivation rule

Recovery-aid
Translate a CAN declarative goal to a pure
declarative goal if the procedure is blocked

CAN-FPP: Planning for Pure Declarative Goals

!↑ ∈ Γ%&
' !↑ = goal -., -0 sol 2, ℬ, -. = ⊥

ℬ,5, 6
7%8

ℬ,5, Γ%& ∖ !↑
!ℱ;

!↑ ∈ Γ%&
' !↑ = goal -., -0 sol<= 2, ℬ, -. = act ! = act ; activate !↑

ℬ,5, 6
7%8

ℬ,5, Γ%&
D ∪ !↑ , ΓFG ∪ goal -., !, -0

!ℱHI

!↑ ∈ Γ%&
' !↑ = goal -., -0 sol<00 2, ℬ, -. = ! ! = actJ ; … ; act=

ℬ,5, 6
7%8

ℬ,5, Γ%& ∖ !↑ , ΓFG ∪ goal -., !, -0
!ℱHLL

Offline planning
Generate plan for an active declarative goal and
add plan to procedural intention set

Online planning
Generate a single action for pure declarative
goal, deactivate that goal, create plan to first
execute that action then to reactive the goal,
and add plan to procedural intention set

Planning failure
Drop pure declarative goal if planning fails
(alternatively: add goal to inactive declarative
intention set)

CAN-FPP: Managing Pure Declarative Goals

!↑ ∈ Γ%& !↑ = goal ,-, ,/ ℬ ⊨ ,- ∨ ,/
ℬ,3, 4 %567 ℬ,3, Γ%& ∖ !↑

9%567
Drop pure declarative goal
Drop declarative goal (whether active or inactive) if
success or fail condition is met

! ∈ Γ75 ! = activate !↑ !↑ ∈ Γ%&?

ℬ,3, 4 @6AB ℬ,3, Γ75 ∖ ! , Γ%&C ∪ !↑
E5& Reactivate pure declarative goal

Activate a pure declarative goal that is inactive

CAN-FPP: Theoretical Results

!↑ = goal (), (+ sol-. /, ℬ, () = act3 ! = act3 ; activate !↑

ℬ,8, !
9:;

…
9:;

ℬ=,8 ⋅ act3 ⋅ … ⋅ act., nil ℬ′ ⊨ ()
ℬ,8, !↑

9:;
…
9:;

ℬ′,8 ⋅ act3 ⋅ … ⋅ act., nil
Theorem 1 (iii)

!↑ = goal (), (+ sol-++ /, ℬ, () = ! ℬ,8, !
9:;

…
9:;

ℬ=,8 ⋅ !, nil ℬ′ ⊨ ()

ℬ,8, !↑
9:;

…
9:;

ℬ=,8 ⋅ !, nil
Theorem 1 (i)

Offline FPP

Offline FPP

Goal state

Goal state

Successful execution

Successful execution

Future Work

Belief-Desire-Intention (BDI)

Programming-Based

Reinforcement Learning

Model-Based

Learning-Based

CAN-FPP

Mengwei Xu, Kim Bauters, Kevin McAreavey, and Weiru Liu. A framework for plan
library evolution in BDI agent systems. In Proceedings of ICTAI'18, to appear.

Reusable FPP plans
Expansion and contraction of plan library
involving FPP plans

First-Principles Planning (FPP)

Hierarchical Task Networks (HTN)

Questions?
Thank you

