A Formal Approach to Embedding
First-Principles Planning
In BDI Agent Systems

Mengwei Xu, Kim Bauters, Kevin McAreavey, Weiru Liu

Elic University of
BRISTOL

Agent Frameworks

Programming-Based Model-Based

Belief-Desire-Intention (BDI) Hierarchical Task Networks (HTN)

First-Principles Planning (FPP)

Plan library Synthesise new plans
Pros: designer intent, scalability Lea rning_Based Pros: robust, dynamic environments
Cons: unforeseen situations Cons: expensive

Reinforcement Learning

Extending BDI with FPP

Programming-Based Model-Based

Belief-Desire-Intention (BDI) BDI+FFP Hierarchical Task Networks (HTN)

First-Principles Planning (FPP)

BDI with FPP

Extend existing BDI framework to account for incomplete .

plan library by synthesising new plans using FPP Lea rni ng-BaSEd

Some existing proposals but... - :
Reinforcement Learning

* Programmer must decide when to call FPP
* Typically informal [Meneguzzi & de Silva, 2015]

BDI: Literature

Software Platforms

Logics Jason [Bordini et al., 2007]

[Cohen & Levesque, 1990] Jack [Winikoff, 2005]

[Rao & Georgeff, 1991] Jadex [Pokahr et al., 2013]

[Shoham, 2009] /

Programming Languages

Conceptual Agent Notation AgentSpeak [Rao, 1996]
Extension of AgentSpeak that provides
formal operational sjemantics \ CAN [WlnlkOff et aI., 2002]

Our framework = CAN-FPP

Formal integration of CAN and FPP with
operational semantics

CANPLAN [Sardina et al., 2011]

CAN: Agent (B, A, 1)

\ Plan library

Initial belief base Set of plan rules
Belief base specifying agent’s initial beliefs

Action description library
Set of STRIPS-style action descriptions

CAN: Agent (B, A, IT)

Initial belief base

Belief base specifying agent’s initial beliefs

Belief base B € L

Set of formulas from logical language L

B must support:

* BE @ (Entailment)
* BU{p} (Addition)
* B\ {¢} (Deletion)

Assume B is a set of atoms

CAN: Agent (B, A, IT)

Action description library
Set of STRIPS-style action descriptions

Action description act: ¢ « B~ ; B+

Set of ‘add” atoms Bt € £
Primitive action symbol

Precondition ¢ € L Set of “delete” atoms B~ € L

CAN: Agent (B, A, I1)

\ Plan library

Context ¢ € L Set of plan rules

Formula from L

Triggering event e
e.g. belief update, new (sub)goal

\

Planrulee : ¢ < P

e

Body (program) P ::=nil |act|?¢@ | +b|—b|le|Py; Py | Py Py | Py I Py | (loy: Piy,n i Bl | goal(gg, P, gf)

/ / S PVNN LT | /

Empty program Belief deletion Sequencing Concurrency CAN declarative goal

iti Relevant plans
Primitive action Belief addition New (sub)goal Conditional P

CAN: Operational Semantics

Basic configuration (B, A, P)

_—— /N

Current intention

Remainder of a plan body to execute

Current belief base
Belief base specifying agent’s current beliefs

Execution history A = (acty, act,, ..., act,)
Sequence of primitive actions executed so far

Current intention set
Set of (partially executed) plan bodies

Agent configuration (B, ,A, D)

CAN: Operational Semantics (Cont.)

1 P2 - DPn

Transition C — C’ Derivation Rule P - [

Transition between (basic or agent) configurations Specifies when/how an agent transitions to new configuration

b

|
(B, A,+b) — (B U {b}, A, nil)
Substitution @0

(+) A 0 B 0 / Substitution of variables in ¢ with values from unifier 8
a:q@ < B ; BT)E af = act E g

t
(B, A, act) — ([B\ B-0] UB+0, A - act, nil) ac

Our Framework: CAN-FPP

1. Adds notion of “pure” declarative goals, in addition to “CAN” declarative goals

* “Active” vs. “inactive” pure declarative goals

e ”Procedural” vs. “declarative” intention sets

2. Adds instrinsic support for automatic calls to FPP
* Direct call (i.e. programmer specified)
* Belief-driven call (via motivation library)

* Recover-aid call (i.e. following plan failure)

3. Extends operational semantics
* Adopting pure declarative goals
* Planning for pure declarative goals
* Managing (dropping, reactivating) pure declarative goals

FPP Problem (A, B, <pg)

ZANS

Action description library Formula from ¢4 € L

Set of STRIPS-style action descriptions or e
Y P Initial state

Set of atoms B € L

Offline solution sol"ff(A,B, gog) = actq ; act, ; ...; acty,

: : Assumes classical plannin
Sequence of actions from A that is guaranteed to reach state B’ from B such that B’ ¢, B &

. i on Could be extended to e.g.
Online solution sol°"(A, B, cpg) = acty conformant planning

Next best action from A so as to reach state B’ from B’ such that B £ g

CAN-FPP: Agent (B, I1, A, M)

Extended plan library Motivation library

Set of extended plan rules Set of motivation rules [a la van Riemsdijk, 2004]

Motivation rule ¢ goal(gos, gof)
Extended planrulee : ¢ « P’ / \

Triggering condition ¢ € L Pure declarative goal

Extended body (program) P’ ::= P | goal (s, Qaf) | activate (8031(%: <Pf))

/ [

Pure declarative goal Reactivation program

CAN-FPP:

Agent Configuration (B, A,)

Ly N (T;,ul;,) =0

Extended intention set I' = I, U T, UT,

/ 1 Fc-lFe Nl =0

Procedural intention set [,
Standard CAN intention set

Active declarative intention set [},
Set of “active” pure declarative goals

Inactive declarative intention set [;,
Set of “inactive” pure declarative goals

Declarative intention set [;, =], U T,

Set of all pure declarative goals

CAN-FPP: Adopting Pure Declarative Goals

Pel, P= goal(gas, nil, qof) P' = goal(gos, gof)

goal A“‘lyoal
(B, A,) — (B, A, [[,y \ {P}, T, U{P"}])
(pw»PYeM BrEepd P'=goal(ps pr) A?
goal

l
(B, A, ')~ (B, A, T, U{P'0})

PET, P=goal(psP,0;) BEgs P'=goal(ps¢f)
(B, 4,1 25 (B, A, [T, \ {PL,TS, U (PTY])

3
Agoal

Direct

Translate a CAN declarative goal to a pure
declarative goal if it has no procedure

Belief-driven

Trigger a motivation rule

Recovery-aid
Translate a CAN declarative goal to a pure
declarative goal if the procedure is blocked

CAN-FPP: Planning for Pure Declarative Goals

Plerj, P'= 8031(905» QOf) sol®’/(A,B,@s) =P P =acty;..;act, Offline planning
bdi P}"Off Generate plan for an active declarative goal and
(B, c/q, F) — (B, c/l, [Fde \ {PT}, Fpr U {goal(gos, P, (pf)}]) add plan to procedural intention set

Online planning

Generate a single action for pure declarative
Ton goal, deactivate that goal, create plan to first

(B A, F) —> (B A, [Fde U {P }, pr U {goal(<ps, P, gof)}]) execute that action then to reactive the goal,

and add plan to procedural intention set

Plerjf, P'= goal(gos, gof) sol°™(A, B, ;) = act P = act; actlvate(PT)

T + T —
P' €Ty, P'=goal(ps ¢f) sol(4,B,¢) = J-P N Planning failure
bdi F Drop pure declarative goal if planning fails
(B; C’q; F) — (B; dq; Fde \ {PT}) (altern:tively: add :gvoal to i;lactive Ideclalrative

intention set)

CAN-FPP: Managing Pure Declarative Goals

P' €Ty P'=goal(ps,0r) BE @5V oy Drop pure declarative goal
drop drop Drop declarative goal (whether active or inactive) if
(B,A,T")— (B, A, T \ {PT}) success or fail condition is met

et)) X
Pely P —actlvate(P) P” €Tl A Reactivate pure declarative goal

(B, a‘l, [') ‘ﬂ (B’ c/l, [Fpr \ {P}, Fc;_e U {PT}]) re Activate a pure declarative goal that is inactive

CAN-FPP: Theoretical Results

Offline FPP Goal state

\ /

A bdi bdi _ ,
P" = goal(gs, ;) sol®T(A,B, @) =P (B,AP)—..—(B,A-Pnil) B E ¢,

i bdi Theorem 1 (i)
(B, A,P")— ..— (B, A-P,nil)

\ Successful execution

Offline FPP

\

P" = goal(g;, gof) sol°™(A, B, ¢5) = act; P = act, ; activate(P")

bdi bdi _ | —
(B,A,P)—..—(B',A-acty - ...-act,,nil) B E ¢,
bdi bdi _
(B,A,P")—..—>(B,A - acty - ...- act,, nil)

\ Successful execution

— (Goal state

Theorem 1 (iii)

Mengwei Xu, Kim Bauters, Kevin McAreavey, and Weiru Liu. A framework for plan
F v t ure WO rk library evolution in BDI agent systems. In Proceedings of ICTAI'18, to appear.

Programming-Based Model-Based

. , : Hierarchical Task Networks (HTN)
Belief-Desire-Intention (BDI)

First-Principles Planning (FPP)
CAN-FPP

Learning-Based

Reusable FPP plans . .
Expansion and contraction of plan library Reinforcement Lea rning
involving FPP plans

Questions?

Thank you

