

CAN-verify: Verification Tool for BDI Agents

Mengwei Xu (Newcastle), Thibault Rivoalen (ENAC), Blair Archibald, (Glasgow), Michele Sevegnani (Glasgow)

Research Background

Engineered systems are becoming more complex and increasingly autonomous

Research Background

Engineered systems are becoming more complex and increasingly autonomous

roomba vacuum cleaner

care-o-bot robotic home assistant

parrot bebop 2 drone

Research Background

Autonomous Agent Systems

Benefits

improving efficiency

optimizing resource use

...

reducing human exposure

Research Motivations

Research Motivations

Engineered systems are becoming more complex and increasingly autonomous the high complexity increases the probability of human design errors

the growing autonomy raises trustworthiness issues

Research Questions

Are these autonomous safe to deploy?

satisfies a list of safety requirements

Research Questions

Are these autonomous safe to deploy?

- if an agent can successfully complete a mission
- if so, what chance is it under environmental uncertainty
- if there exists an optimal strategies for agent decision making while satisfying the properties

Autonomous Agent

An entity

which **perceives** its environment, which **deliberates** accordingly, which **takes actions** autonomously,

in order to achieve some objectives

(Russel and Norvig, 2003)

Cognitive Agents

Cognitive Agents

An autonomous agent which

must have explicit reasons for making the choices it does should be able explain them if necessary

Such agent are programmed by describing

- 1. their motivations (goals, desires, intentions)
- 2. information (knowledge, beliefs)
- 3. and how these change over time

Beliefs-Desires-Intentions (BDI) Agents

High level, Declarative, and Procedural – Plan library

High level, Declarative, and Procedural

lane	lane	lane	lane
a	b	c	d
robot			bin

/* Initial base beliefs */

adjacent(a, b). adjacent(b, c). adjacent(c, d). location(robot, a). location(bin, d).

/* Plan library */

+location(waste, X)

- » : location(bin, Y)
- » » <-·!collect(waste); !deposit(waste, bin).</pre>

+!collect(X)

>> : has(robot, X)
>> >> <- stop.</pre>

+!collect(X) >> : • not · has(robot, · X) · & · location(X, · Y) >> >> <- · !go_to(Y); • pick_up(X).</pre>

+!deposit(X, Y) >> : has(robot, X) & location(Y, Z) -

 $\gg \approx <-\cdot !go_to(Z); \cdot drop(X, \cdot Y).$

+!go_to(X)

>> : location(robot, X) ·
>> >> <- · stop.</pre>

" Scope

+!go_to(X)

```
>> : · location(robot, · Y) · & · adjacent(Y, · Z)
>> >> <- · move(Y, · Z); · !go_to(X).</pre>
```

High level, Declarative, and Procedural

			/* Initi	ial base beliefs */	/* Plan library */
			<pre>adjacent(a, b). adjacent(b, c). adjacent(c, d). location(robot, a). location(bin, d). location(waste,b).</pre>		<pre>+location(waste, X) >> : location(bin, Y) >> >> <!--collect(waste); !deposit(waste, bin). +!collect(X) -->> : has(robot, X) >> >> <stop.< pre=""></stop.<></pre>
lane	lane	lana	lana		+!collect(X)
		lane	lane		<pre>>> : not has(robot, X) & location(X, Y) >> >> <- !go_to(Y); pick_up(X).</pre>
а	b	С	d		" " " <- 'go_co(i), pick_up(x):
robot	waste		bin		<pre>+!deposit(X, Y) >> : has(robot, X) & location(Y, Z) + >> >> <!--go_to(Z); drop(X, Y). +!go_to(X) -->> : location(robot, X) + >> >> <stop. +!go_to(x)="">> : location(robot, Y) & adjacent(Y, Z) >> >> <move(y, !go_to(x).<="" pre="" z);=""></move(y,></stop.></pre>

Research Questions (revisited)

Are autonomous systems safe to deploy?

Writing correct BDI programs is not always easy

Plans can include complex constructs including

1. declarative goals,

2. failure recovery,

3. interleaved concurrency

Research Contribution

Bigraphs

- 1. Bigraph: superimposition of a place graph and a link graph
- 2. Place graph: directed acyclic graph topological space no distances containment relation
- 3. Link graph: hypergraph relationships between sets of entities

Bigraph

Place graph

Link graph

- A set of reaction rules specify the dynamics of the system
- How to apply a rule to a bigraph (rewriting):
 - 1. Identify occurrences of the lhs in the bigraph
 - 2. Substitute each of them with the rhs

BDI Encoding in Bigraphs

Science of Computer Programming 215 (2022) 102760

Modelling and verifying BDI agents with bigraphs

Blair Archibald, Muffy Calder, Michele Sevegnani, Mengwei Xu*

Check for updates

School of Computing Science, University of Glasgow, UK

predicate labelling in bigraph model

(2)

(3)

exhaustive execution of programs

built-in and user-defined belief-based specification formalisation in CTL

formal verification

1. Quantitative Verification and Strategy Synthesis for BDI Agents. NASA Formal Methods 2023

- 1. Probabilistic BDI Agents: Actions, Plans, and Intentions. SEFM 2021
- 2. Quantitative Modelling and Analysis of BDI Agents. *SoSyM 2023*

Thank you & Questions